教學反思是善于發(fā)現(xiàn)自己教學中的中的問題,如果沒有寫教學反思的意識,那我們的教學水平是很難得到提升的,以下是范文社小編精心為您推薦的解方程的教學反思參考5篇,供大家參考。
解方程的教學反思篇1
解分式方程的思想是將分式方程轉(zhuǎn)化為整式方程,驗根是解分式方程必不可少的步驟。分式方程又是解決實際問題的工具之一。
教學設計中蘊涵的數(shù)學思想和數(shù)學方法:《分式》一章在教學上應多用類比的方法,與分數(shù)進行類比教學,使學生明確分式與分數(shù)、分式與整式等方面的區(qū)別與聯(lián)系,體會分式的模型思想,進一步發(fā)展符號感,一定能取到事半功倍之效。而解分式方程的基本思想是把分式方程轉(zhuǎn)化為整式方程。解可化為一元一次方程的分式方程,也是以一元一次方程的解法為基礎,只是需把分式方程化成整式方程,所以教學時應注意重新舊知識的聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的思想,同時要適當復習一元一次方程的解法。
教學目標:
1.了解分式方程的概念,和產(chǎn)生增根的原因。
2.掌握分式方程的解法,會解可化為一元一次方程的分式方程,會檢驗一個數(shù)是不是原方程的增根。
重點、難點
1.重點:會解可化為一元一次方程的分式方程,會檢驗一個數(shù)是不是原方程的增根。
2.難點:會解可化為一元一次方程的分式方程,會檢驗一個數(shù)是不是原方程的增根。
3.認知難點與突破方法
解可化為一元一次方程的分式方程,也是以一元一次方程的解法為基礎,只是需把分式方程化成整式方程,所以教學時應注意重新舊知識的聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的思想,同時要適當復習一元一次方程的解法。至于解分式方程時產(chǎn)生增根的原因只讓學生了解就可以了,重要的是應讓學生掌握驗根的方法。
要使學生掌握解分式方程的基本思路是將分式方程轉(zhuǎn)化整式方程,具體的方法是“去分母”,即方程兩邊統(tǒng)稱最簡公分母。
解方程的教學反思篇2
本節(jié)共分3課時,第一課時引導學生通過轉(zhuǎn)化得到解一元二次方程的配方法,第二課時利用配方法解數(shù)字系數(shù)的一般一元二次方程,第3課時通過實際問題的解決,培養(yǎng)學生數(shù)學應用的意識和能力,同時又進一步訓練用配方法解題的技能。
在教學中最關鍵的是讓學生掌握配方,配方的對象是含有未知數(shù)的二次三項式,其理論依據(jù)是完全平方式,配方的方法是通過添項:加上一次項系數(shù)一半的平方構(gòu)成完全平方式,對學生來說,要理解和掌握它,確實感到困難,,因此在教學過程中及課后批改中發(fā)現(xiàn)學生出現(xiàn)以下幾個問題:
在利用添項來使等式左邊配成一個完全平方公式時,等式的右邊忘了加。
在開平方這一步驟中,學生要么只有正、沒有負的,要么右邊忘了開方。
當一元二次方程有二次項的系數(shù)不為1時,在添項這一步驟時,沒有將系數(shù)化為1,就直接加上一次項系數(shù)一半的平方。
因此,要糾正以上錯誤,必須讓學生多做練習、上臺表演、當場講評,才能熟練掌握。
通過本節(jié)課的教學,使我真正認識到了自己課堂教學的成功與失敗。對我今后課堂教學有了一定引領方向有了很大的幫助。下面我就談談自己對這節(jié)課的反思。
本節(jié)課的重點主要有以下3點:
1. 找出a,b,c的相應的數(shù)值
2. 驗判別式是否大于等于0
3. 當判別式的數(shù)值符合條件,可以利用公式求根.
在講解過程中,我沒讓學生進行(1)(2)步就直接用公式求根,第一次接觸求根公式,學生可以說非常陌生,由于過高估計學生的能力,結(jié)果出現(xiàn)錯誤較多.
1. a,b,c的符號問題出錯,在方程中學生往往在找某個項的系數(shù)時總是丟掉前面的符號
2. 求根公式本身就很難,形式復雜,代入數(shù)值后出錯很多.
其實在做題過程中檢驗一下判別式著一步單獨挑出來做并不麻煩,直接用公式求值也要進行,提前做著一步在到求根公式時可以把數(shù)值直接代入.在今后的教學中注意詳略得當,不該省的地方一定不能省,力求收到更好的教學效果
3、板書不太理想。板書可以說在課堂教學也起關鍵作用,它可以幫學生溫習本課的內(nèi)容,而我許多本該板書的內(nèi)容全部反映在大屏幕上,在繼續(xù)講一下個內(nèi)容時,這些內(nèi)容也就不會再出現(xiàn),只給學生瞬間的停留,這樣做也有欠妥當。
4、本節(jié)課沒有激情,學習的積極性調(diào)動不起來,對學生地鼓勵性的語言過于少,可以說幾乎沒有。
分解因式法解一元二次方程的教學反思
教學時可以讓學生先各自求解,然后進行交流并對學生的方法與課本上對小穎、小明、小亮的方法進行比較與評析,發(fā)現(xiàn)分解因式是解某些一元二次方程較為簡便的方法。利用分解因式法解題時。很多同學在解題時易犯的錯誤是進行了非同解變形,結(jié)果丟掉一根,對此教學時只能結(jié)合具體方程予以說明,另外,本節(jié)課學生易忽略一點是“或”與“且”的區(qū)別,應做些說明。
對于學有余力的學生可以介紹十字相乘法,它對二次三項式分解因式簡便。
通過以上的反思,我將在以后的教學中對自己存在的優(yōu)點我會繼續(xù)保持,針對不足我將會不斷地改進,使自己的課堂教學逐步走上一個新的臺階。
解方程的教學反思篇3
一元二次方程應用教學反思
本兩周繼續(xù)學習一元二次方程的解法及應用,我現(xiàn)從方程的應用來反思如下:
新課程要求培養(yǎng)學生應用數(shù)學的意識與能力,作為數(shù)學教師,我們要充分利用已有的生活經(jīng)驗,把所學的數(shù)學知識用到現(xiàn)實中去,體會數(shù)學在現(xiàn)實中應用價值。
本章節(jié)的應用基本上是以學生熟悉的'現(xiàn)實生活為問題的背景,讓學生從具體的問題情境中抽象出數(shù)量關系,歸納出變化規(guī)律,并能用數(shù)學符號表示,最終解決實際問題。這類注重聯(lián)系實際考查學生數(shù)學應用能力的問題,體現(xiàn)時代性,并且結(jié)合社會熱點、焦點問題,引導學生關注國家、人類和世界的命運。既有強烈的德育功能,又可以讓學生從數(shù)學的角度分析社會現(xiàn)象,體會數(shù)學在現(xiàn)實生活中的作用。
對教學過程進行反思,既有成功的一面,又有不足之處。需改進的方面有:
1、由于怕完不成任務,給學生獨立思考時間安排有些不合理,這樣容易讓思維活躍的學生的回答代替了其他學生的思考,掩蓋了其他學生的疑問。例如p46有多種解法,課后一些學生與老師交流,但課上沒有得到充分的展示。
2、只考慮捕捉學生的思維亮點,一生列錯了方程,老師沒有給予及時糾正。導致使一些同學陷入誤區(qū)。3、有些問題講的過于快,理解較慢的同學跟不上。
解方程的教學反思篇4
本課為人教版第四單元教學內(nèi)容,本教材解方程方法利用了天平平衡的原理,采用了等式的性質(zhì)來教學解方程。形如x±a=b一類的方程利用等式的基本性質(zhì)一學生很容易解決,形如ax=b與x÷a=b一類的方程,利用等式的基本性質(zhì)二學生也很容易解決。但行如a-x=b和a÷x=b此類的方程,學生就無從下手了,如果利用等式的基本性質(zhì)解,方程變形的過程及算理解釋比較麻煩。解決問題時當需要列出形如a-x=b或a÷x=b的方程時,我就要求學生根據(jù)實際問題的數(shù)量關系,列成形如x+b=a或bx=a的方程。但我覺得回避這兩類問題不是很好的方法,否則,我們的教學就會顯得片面和狹隘。如:一共有128人平均分成Х組,每組8人,學生們都不假思索地列出了128÷x=8,但是利用等式的基本性質(zhì)學生就不會解,但你也不能說這個方程列錯了呀。
因此我當有學生列了a-x=b或a÷x=b的方程時,我借機教了利用算術(shù)思路解方程(被減數(shù)=差+減數(shù),被除數(shù)=商xx除數(shù))介紹老板教材的解方程的方法?;A好的孩子就容易接受新的方法,而基礎差的孩子就還是無法解答此類問題。
另外教材要求,在學生用等式基本性質(zhì)解方程時,方程的變形過程應該要寫出來,等到熟練以后,再逐步省略。這樣的要求,在實際操作中,帶來了書寫上的繁瑣。因為用等式基本性質(zhì)解方程,每兩步才能完成一次方程的變形。這相對于簡單的方程,尚沒什么,但對一些稍復雜的方程,其解的過程就顯得太繁瑣了。
看來教材利用等式的基本性質(zhì)來解簡易方程也是存在著一些問題,不知各位老師有什么好的方法來解決這些問題呢?請不吝賜教!
解方程的教學反思篇5
本節(jié)課的內(nèi)容是在學生學習了用字母表示數(shù)、等式的性質(zhì)的基礎上進行學習的。本冊教材的解方程不僅安排了形如x+a=bx-a=bax=bx÷a=b這樣的簡單方程,還安排了形如a-x=ba÷x=b這樣的特殊方程。
成功之處:
1、淡化依據(jù)逆運算關系解方程,與初中數(shù)學相銜接。根據(jù)《標準(20xx)》的要求,從小學就引入等式的基本性質(zhì),并以此為基礎導出解方程的方法,這樣就避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于改善和加強中小學數(shù)學教學的銜接。從而摒棄了原來依據(jù)逆運算解方程的思路,能有效降低學生學習的難度,也降低了記憶的難度。實際上依據(jù)逆運算解方程就是用算術(shù)的思路求未知數(shù),只適合解一些簡單的方程,到了中學還要重新另起爐灶。因此,利用等式的性質(zhì)解方程能夠幫助學生深入的理解方程的意義,能深入理解方程所揭示的等量關系,也更有助于逐步感悟方程的實質(zhì)、等價思想和建模思想。
2、重點教學特殊方程,體會用等式性質(zhì)解方程的優(yōu)勢。在例3的教學中,先讓學生自主嘗試解方程20-x=9,大部分學生依據(jù)前面學習的內(nèi)容寫成了下面的過程:20-x=9
解:20-x+20=9+20
x=29
可是學生經(jīng)過檢驗發(fā)現(xiàn)x=29并不是方程的解,從而引導學生討論怎樣把新知識轉(zhuǎn)化為舊知識來解決問題。
不足之處:
1、在練習中由于課本這樣的練習太少,沒有增加相應的題目,學生熟練的程度還是比較欠缺。
2、學生對于歸納總結(jié)出來的特殊方程的解法還沒有內(nèi)化,導致學生出現(xiàn)解普通方程和特殊方程在解法上相混淆。
再教設計:
1、及時總結(jié)特殊方程的解法:當未知數(shù)是減數(shù)或除數(shù)時,方程兩邊要同時加上或乘未知數(shù),再解方程。
2、要弄清什么是減數(shù)和除數(shù),避免出現(xiàn)不必要的錯誤。