寫教案其實也是可以體現(xiàn)我們老師邏輯思維能力的哦,教案是需要我們結(jié)合備課的實際寫的, 詳細(xì)的教案會讓我們的課堂更加精彩,范文社小編今天就為您帶來了211一元二次方程教案5篇,相信一定會對你有所幫助。
211一元二次方程教案篇1
教學(xué)目標(biāo)?:
知識與技能目標(biāo):1.使學(xué)生了解一元二次方程及整式方程的意義;2.掌握一元二次方程的一般形式,正確識別二次項系數(shù)、一次項系數(shù)及常數(shù)項.
過程與方法目標(biāo): 1.通過一元二次方程的引入,培養(yǎng)學(xué)生分析問題和解決問題的能力;2.通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對概念理解的完整性和深刻性.
情感與態(tài)度目標(biāo):由知識來源于實際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)列方程向?qū)W生滲透方程的思想方法,由此培養(yǎng)學(xué)生用數(shù)學(xué)的意識.。
教學(xué)重、難點與關(guān)鍵:
重點:一元二次方程的意義及一般形式.
難點:正確識別一般式中的“項”及“系數(shù)”。
教輔工具:
教學(xué)程序設(shè)計:
程序
教師活動
學(xué)生活動
備注
創(chuàng)設(shè)
問題
情景
1.用電腦演示下面的操作:一塊長方形的薄鋼片,在薄鋼片的四個角上截去四個相同的小正方形,然后把四邊折起來,就成為一個無蓋的長方體盒子,演示完畢,讓學(xué)生拿出事先準(zhǔn)備好的長方形紙片和剪刀,實際操作一下剛才演示的過程.學(xué)生的實際操作,為解決下面的問題奠定基礎(chǔ),同時培養(yǎng)學(xué)生手、腦、眼并用的能力.
2.現(xiàn)有一塊長80cm,寬60cm的薄鋼片,在每個角上截去四個相同的小正方形,然后做成底面積為1500cm2的無蓋的長方體盒子,那么應(yīng)該怎樣求出截去的小正方形的'邊長?
教師啟發(fā)學(xué)生設(shè)未知數(shù)、列方程,經(jīng)整理得到方程x2-70x+825=0,此方程不會解,說明所學(xué)知識不夠用,需要學(xué)習(xí)新的知識,學(xué)了本章的知識,就可以解這個方程,從而解決上述問題.
板書:“第十二章一元二次方程”.教師恰當(dāng)?shù)恼Z言,激發(fā)學(xué)生的求知欲和學(xué)習(xí)興趣.
學(xué)生看投影并思考問題
通過章前引例和節(jié)前引例,使學(xué)生真正認(rèn)識到知識來源于實際,并且又為實際服務(wù),學(xué)習(xí)了一元二次方程的知識,可以解決許多實際問題,真正體會學(xué)習(xí)數(shù)學(xué)的意義;產(chǎn)生用數(shù)學(xué)的意識,調(diào)動學(xué)生積極主動參與數(shù)學(xué)活動中.同時讓學(xué)生感到一元二次方程的解法在本章中處于非常重要的地位.
探
究
新
知
1
1.復(fù)習(xí)提問
(1)什么叫做方程?曾學(xué)過哪些方程?
(2)什么叫做一元一次方程?“元”和“次”的含義?
(3)什么叫做分式方程?
2.引例:剪一塊面積為150cm2的長方形鐵片使它的長比寬多5cm,這塊鐵片應(yīng)怎樣剪?
引導(dǎo),啟發(fā)學(xué)生設(shè)未知數(shù)列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以觀察、比較,得到整式方程和一元二次方程的概念.
整式方程:方程的兩邊都是關(guān)于未知數(shù)的整式,這樣的方程稱為整式方程.
一元二次方程:只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是2,這樣的整式方程叫做一元二次方程.
3.練習(xí):指出下列方程,哪些是一元二次方程?
(1)x(5x-2)=x(x+1)+4x2;
(2)7x2+6=2x(3x+1);
(3)
211一元二次方程教案篇2
一元二次方程的概念
教材分析:1.本節(jié)以生活中的實際問題為背景,引出一元二次方程的概念,讓學(xué)生掌握一元二次方程的特點,歸納出一元二次方程的一般形式,給出一元二次方程的根的概念,并指出一元二次方程的根不唯一。本節(jié)內(nèi)容是在前面所學(xué)方程、一元一次方程、整式、方程的解的基礎(chǔ)上進(jìn)行學(xué)習(xí),也是后面學(xué)習(xí)二次函數(shù)的一個基礎(chǔ)。
2.這些概念是全章后繼內(nèi)容的基礎(chǔ)。
3.讓學(xué)生體會數(shù)學(xué)來源于生活,又服務(wù)于生活的基本思想。
學(xué)情分析:1.授課班級學(xué)生基礎(chǔ)較差,學(xué)生成績參差不齊,差生較多。教學(xué)中應(yīng)給予充分思考的時間,注意講練結(jié)合,以學(xué)生為本,體現(xiàn)生本課堂的理念。
2.該班級學(xué)生在平時訓(xùn)練中已經(jīng)形成了良好的合作精神和合作氣氛,可以充分發(fā)揮合作的 優(yōu)勢,從而充分調(diào)動學(xué)生主動性和積極性,使課堂氣氛活躍,讓學(xué)生在愉快的環(huán)境中學(xué)習(xí)。
3.作為該班的班主任,同時又擔(dān)任該班的數(shù)學(xué)教學(xué),對學(xué)生學(xué)習(xí)情況有比較深入地了解,在解決具體問題的時候可以兼顧不同能力的學(xué)生,充分調(diào)動學(xué)生的積極性,在練習(xí)題的設(shè)計上要針對學(xué)生的差異采取分層設(shè)計的方法,著重加強對學(xué)生的雙基訓(xùn)練。
教學(xué)目標(biāo):
一 知識與技能:
1.理解一元二次方程的概念,能判斷一個方程是一元二次方程。
2.掌握一元二次方程的一般形式,正確認(rèn)識二次項系數(shù)、一次項系數(shù)及常數(shù)項.
二 過程與方法:
1.引導(dǎo)學(xué)生分析實際問題中的數(shù)量關(guān)系,組織學(xué)生討論,讓學(xué)生類比、抽象出一元二次方程的概念 。
2.培養(yǎng)獨立思考,合作交流學(xué),分析問題,解決問題的能力。
三 情感態(tài)度與價值觀:
1.培養(yǎng)學(xué)生主動探究知識、自主學(xué)習(xí)和合作交流的意識.
2.激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識.
3.讓學(xué)生體會數(shù)學(xué)來源于生活,又服務(wù)于生活的基本思想,從而意識到數(shù)學(xué)在生活中的作用。
教學(xué)重點:一元二次方程的概念及一般形式,利用概念解決實際問題。
教學(xué)難點:1.由實際問題向數(shù)學(xué)問題的轉(zhuǎn)化過程.
2.正確識別一般式中的“項”及“系數(shù)”.
3.一元二次方程的特點,如何判斷一個方程是一元二次方程。
教學(xué)過程:
一、創(chuàng)設(shè)情境,引入新課
1.問題1:廣安區(qū)為增加農(nóng)民收入,需要調(diào)整農(nóng)作物種植結(jié)構(gòu),計劃無公害蔬菜的產(chǎn)量比翻一番,要實現(xiàn)這一目標(biāo),和20無公害蔬菜產(chǎn)量的年平均增長率是多少?(通過放幻燈片引入)
設(shè)無公害蔬菜產(chǎn)量的年平均增長率為x,20的產(chǎn)量為a(a≠0),翻一番的意思就是a變?yōu)?a,那么
(1)用代數(shù)式表示20的產(chǎn)量;
(2)年蔬菜的產(chǎn)量比年增加了2x,對嗎?為什么?你能用代數(shù)式表示出來嗎?
學(xué)生思考交流得出方程 a(1+x)2=2a
整理得,x2+2x-1=0…………①
2.通過幻燈片引入情境,提出問題:
問題2:廣安市政府在一塊寬200m、長320m的矩形廣場上,修筑寬相等的三條小路(兩條縱向、一條橫向,縱向與橫向垂直),把矩形空地分成大小一樣的6塊,建成小花壇,要使花壇的總面積為57000m2,問小路的寬應(yīng)為多少?
設(shè)小路的寬為x m,則橫向小路的面積如何表示?縱向的呢?重疊部分的面積是多少?小路所占的面積用x的代數(shù)式如何表示?
這個問題的相等關(guān)系是什么?
320×200-(320x+2×200x-2x2)=57000
整理得x2-36x+35=0
誰還能換一種思路考慮這個問題?
把6個小花壇拼起來是一個多長多寬的矩形,由此你會得出什么樣的方程?
(320-2x)(200-x)=57000
整理得x2-36x+35=0…………②
比較一下,哪種方法更巧妙?
3.通過幻燈片引入情景。問題3:廣安重百商場銷售某品牌服裝,若每件盈利50元,則每月可銷售100件。若每件降價1元,則每月可多賣出5件,若每月要盈利6000元,則商場決定每件服裝降價多少?
設(shè)每件降價x元,則現(xiàn)在的盈利為(50-x)元,降價后銷售量為(100+5x)件??闪蟹匠虨椋?50-x)(100+5x)=6000
211一元二次方程教案篇3
教學(xué)目的
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點和難點:
重點:
1.一元二次方程的有關(guān)概念
2.會把一元二次方程化成一般形式
難點:一元二次方程的含義.
教學(xué)過程設(shè)計
一、引入新課
引例:剪一塊面積是150cm2的長方形鐵片,使它的長比寬多5cm、這塊鐵片應(yīng)該怎樣剪?
分析:1.要解決這個問題,就要求出鐵片的長和寬。
2.這個問題用什么數(shù)學(xué)方法解決?(間接計算即列方程解應(yīng)用題。
3.讓學(xué)生自己列出方程( x(x十5)=150 )
深入引導(dǎo):方程x(x十5)=150有人會解嗎?你能叫出這個方程的名字嗎?
二、新課
1.從上面的引例我們有這樣一個感覺:在解決日常生活的計算問題中確需列方程解應(yīng)用題,但有些方程我們解不了,但必須想辦法解出來。事實上初中代數(shù)研究的主要對象是方程。這部分內(nèi)容從初一一直貫穿到初三。到目前為止我們對方程研究的還很不夠,從今天起我們就開始研究這樣一類方程--------一元一二次方程(板書課題)
2.什么是—元二次方程呢?現(xiàn)在我們來觀察上面這個方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程,就這一點來說它與一元一次方程沒有什么區(qū)別、也就是說一元二次方程首先必須是一個整式方程,但是一個整式方程未必就是一個一元二次方程、這還取決于未知數(shù)的次數(shù)是幾。如果方程未知數(shù)的次數(shù)是2、這樣的整式方程叫做一元二次方程.(板書一元二次方程的定義)
3.強化一元二次方程的概念
下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是一元二次方程?
(1)3x十2=5x—3:(2)x2=4
(2)(x十3)(3x·4)=(x十2)2; (4)(x—1)(x—2)=x2十8
從以上4例讓學(xué)生明白判斷一個方程是否是一元二次方程不能只看表面、而是能化簡必須先化簡、然后再查看這個方程未知數(shù)的.次數(shù)是否是2。
4.一元二次方程概念的延伸
提問:一元二次方程很多嗎?你有辦法一下寫出所有的一元二次方程嗎?
引導(dǎo)學(xué)生回顧一元二次方程的定義,分析一元二次方程項的情況,啟發(fā)學(xué)生運用字母,找到一元二次方程的一般形式
ax2+bx+c=0 (a≠0)
1).提問a=0時方程還是一無二次方程嗎?為什么?(如果a=0、b≠就成了一元一次方程了)。
2).講解方程中ax2、bx、c各項的名稱及a、b的系數(shù)名稱.
3).強調(diào):一元二次方程的一般形式中“=”的左邊最多三項、其中一次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在、而且左邊通常按x的降冪排列:特別注意的是“=”的右邊必須整理成0。
強化概念(課本p6)
1.說出下列一元二次方程的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)x2十3x十2=o (2)x2—3x十4=0; (3)3x2-5=0
(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
課堂小節(jié)
(1)本節(jié)課主要介紹了一類很重要的方程—一一元二次方程(如果方程未知數(shù)的次數(shù)為2,這樣的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左邊最多三項、其中二次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在。特別注意的是“=”的右邊必須整理成0;
(3)要很熟練地說出隨便一個一元二次方程中一二次項、一次項、常數(shù)項:二次項系數(shù)、一次項系數(shù).
211一元二次方程教案篇4
教材分析
1.本節(jié)在引言中的方程基礎(chǔ)上,首先通過兩個實際問題,進(jìn)一步引出一元二次方程的具體例子,然后引導(dǎo)學(xué)生觀察出它們的共同點,得出一元二次方程的定義。
2.書中的定義是以未知數(shù)的個數(shù)和次數(shù)為標(biāo)準(zhǔn),用文字的形式給出的。一元二次方程都可以整理為ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。
3、本節(jié)始終都有列方程的內(nèi)容,這樣安排一方面是分散列方程這一教學(xué)難點,化整為零地培養(yǎng)由實際問題抽象出方程模型的能力;另一方面是為由一些具體的方程歸納出一元二次方程的概念。
學(xué)情分析
1、通過課堂練習(xí),大部分學(xué)生對概念基本理解,能夠找出各項系數(shù),但有少數(shù)學(xué)困生對于系數(shù)符號沒有掌握。
2、部分學(xué)生由于基礎(chǔ)較薄弱,用一元二次方程解決實際問題有一定的難度,解決這問題要以多練為主。
3、學(xué)生認(rèn)知障礙點:一元二次方程與不等式和整式的綜合運用能力有待提高。
教學(xué)目標(biāo)
1、從實際問題引出一元二次方程,使學(xué)生進(jìn)一步體會方程是刻畫現(xiàn)實世界中數(shù)量關(guān)系的一個有效數(shù)學(xué)模型,培養(yǎng)學(xué)生分析問題和解決問題的能力及用數(shù)學(xué)的意識。
2、使學(xué)生正確理解一元二次方程的概念,掌握一元二次方程的一般形式,并能將一元二次方程轉(zhuǎn)化為一般形式,正確識別二次項系數(shù)、一次項系數(shù)及常數(shù)項。
3、通過概念教學(xué),培養(yǎng)學(xué)生的觀察、類比、歸納能力,同時通過變式練習(xí),使學(xué)生對概念理解具備完整性和深刻性。
教學(xué)重點和難點
1、重點:概念的形成及一般形式。
2、難點:從實際問題引出一元二次方程;正確識別一般形式中的“項”及“系數(shù)”。
211一元二次方程教案篇5
?教學(xué)目的】? 精選學(xué)生在解一元二次方程有關(guān)問題時出現(xiàn)的典型錯例加以剖析,幫助學(xué)生找出產(chǎn)生錯誤的'原因和糾正錯誤的方法,使學(xué)生在解題時少犯錯誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。
?課前練習(xí)】
1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時,方程為一元一次方程;當(dāng) a_____時,方程為一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時,方程有兩個相等的實數(shù)根,當(dāng)△_______時,方程有兩個不相等的實數(shù)根,當(dāng)△________時,方程沒有實數(shù)根。
?典型例題】
例1?? 下列方程中兩實數(shù)根之和為2的方程是
(a)?? x2+2x+3=0???? (b) x2-2x+3=0??? (c)? x2-2x-3=0????? (d)? x2+2x+3=0
錯答: b
正解: c
錯因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選b,又考慮到方程有實數(shù)根,故由△可知,方程b無實數(shù)根,方程c合適。
例2 ??若關(guān)于x的方程x2+2(k+2)x+k2=0? 兩個實數(shù)根之和大于-4,則k的取值范圍是(???? )
(a)?? k>-1??? ?(b)? k<0?? ?(c) -1< k<0??? (d) -1≤k<0
錯解 :b
正解:d
錯因剖析:漏掉了方程有實數(shù)根的前提是△≥0
例3(2000廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2