針對以往教學(xué)中的不足,我們要學(xué)會在制定教案的時候,找到合適得解決措施,沒有合理的思考,寫出的教案就很難給課堂帶來較高的活躍度,下面是范文社小編為您分享的方程的根教案5篇,感謝您的參閱。
方程的根教案篇1
設(shè)計說明
本節(jié)課的教學(xué)任務(wù)是使學(xué)生了解等式性質(zhì)(二),并會用這個性質(zhì)解方程。由于學(xué)生在探究等式性質(zhì)(一)時已經(jīng)具備了一定的學(xué)習(xí)經(jīng)驗,因此本節(jié)課的教學(xué)設(shè)計主要突出以下兩點:
1、在操作實踐中驗證等式性質(zhì)(二)
在教學(xué)中,通過學(xué)生的親身實踐,邊操作邊觀察邊總結(jié),使等式性質(zhì)(二)順利地生成,同時讓學(xué)生對此有直觀的理解,強(qiáng)化學(xué)習(xí)效果。
2、通過直觀圖理解解方程的過程
在指導(dǎo)學(xué)生利用等式性質(zhì)(二)解方程時,充分發(fā)揮了直觀圖的作用,加深學(xué)生對解方程的過程和依據(jù)的了解,提高學(xué)習(xí)效率。
課前準(zhǔn)備
教師準(zhǔn)備:
ppt課件
學(xué)生準(zhǔn)備:
天平,若干個貼有標(biāo)簽的砝碼
教學(xué)過程
猜想導(dǎo)入
師:誰能說出我們學(xué)過的等式性質(zhì)?
[學(xué)生回顧上節(jié)課學(xué)習(xí)的內(nèi)容,并匯報:等式兩邊同時加上(或減去)同一個數(shù),等式仍然成立]
引導(dǎo)學(xué)生猜想:等式兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式是否仍然成立呢?思考并在小組內(nèi)交流自己的想法,然后匯報。
設(shè)計意圖:學(xué)生已經(jīng)學(xué)過了等式兩邊都加上(或減去)同一個數(shù),等式仍然成立的性質(zhì)。上課伊始,先復(fù)習(xí)所學(xué)知識,并由此進(jìn)行合理猜想,再自然地引入新課,直奔主題。
動手驗證,探究規(guī)律
師:大家的猜想對不對呢?我們來驗證一下。
1、(課件演示,學(xué)生操作)天平左側(cè)的砝碼重x克,右側(cè)放5克的砝碼,這時天平的指針指向正中央,說明了什么?你知道左側(cè)的砝碼重多少克嗎?怎樣用等式表示?(說明天平平衡,左側(cè)的砝碼重5克,x=5)
2、如果左側(cè)再加上2個x克的砝碼,右側(cè)再加上2個5克的砝碼,這時天平的指針指向正中央,說明了什么?你能寫出一個等式嗎?(說明天平平衡,3x=3×5)
3、如果左側(cè)有2個x克的砝碼,右側(cè)有2個10克的砝碼,這時天平的指針指向正中央,說明了什么?你能寫出一個等式嗎?(說明天平平衡,2x=20)
4、如果左側(cè)拿走一個x克的砝碼,右側(cè)拿走一個10克的`砝碼,這時天平的指針指向正中央,說明了什么?你能寫出一個等式嗎?(說明天平平衡,2x÷2=20÷2)
5、通過上面的游戲,你發(fā)現(xiàn)了什么?
小結(jié):等式兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式仍然成立。
設(shè)計意圖:利用課件的演示和動手操作,讓學(xué)生體會天平兩側(cè)的變化情況,加深學(xué)生對等式的理解,體會等式的變化規(guī)律。
解方程
1、(課件出示教材70頁方程:4y=2000)
師:你們能求出這個方程的解嗎?
(學(xué)生先獨立嘗試,然后小組交流,并匯報)
預(yù)設(shè)
方法一:想?×4=2000,直接得出答案。
方法二:用等式性質(zhì)解方程,方程的兩邊都除以4,從而得出答案。
師:為什么方程的兩邊都除以4,依據(jù)是什么?
預(yù)設(shè)
生:依據(jù)是等式的兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式仍然成立。
讓學(xué)生說出用等式性質(zhì)解方程的過程。
方程的根教案篇2
數(shù)學(xué)《一元二次方程》教案??
一、教材分析
1、教材的地位和作用
一元二次方程是中學(xué)教學(xué)的主要內(nèi)容,在初中代數(shù)中占有重要的地位,在一元二次方程的前面,學(xué)生學(xué)了實數(shù)與代數(shù)式的運算,一元一次方程(包括可化為一元一次方程的分式方程)和一次方程組,上述內(nèi)容都是學(xué)習(xí)一元二次方程的基礎(chǔ),通過一元二次方程的學(xué)習(xí),就可以對上述內(nèi)容加以鞏固,一元二次方程也是以后學(xué)習(xí)(指數(shù)方式,對數(shù)方程,三角方程以及不等式,函數(shù),二次曲線等內(nèi)容)的基礎(chǔ),此外,學(xué)習(xí)一元二次方程對其他學(xué)科也有重要的意義。
2、教學(xué)目標(biāo)及確立目標(biāo)的依據(jù)
九年義務(wù)教育大綱對這部分的要求是:“使學(xué)生了解一元二次方程的概念”,依據(jù)教學(xué)大綱的要求及教材的內(nèi)容,針對學(xué)生的理解和接受知識的實際情況,以提高學(xué)生的素質(zhì)為主要目的而制定如下教學(xué)目標(biāo)。
知識目標(biāo):使學(xué)生進(jìn)一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。
能力目標(biāo):通過一元二次方程概念的教學(xué),培養(yǎng)學(xué)生善于觀察,發(fā)現(xiàn),探索,歸納問題的能力,培養(yǎng)學(xué)生創(chuàng)造性思維和邏輯推理的能力。
德育目標(biāo):培養(yǎng)學(xué)生把感性認(rèn)識上升到理性認(rèn)識的辯證唯物主義的觀點。
3、重點,難點及確定重難點的依據(jù)
“一元二次方程”有著承上啟下的作用,在今后的學(xué)習(xí)中有廣泛的應(yīng)用,因此本節(jié)課做為起始課的重點是一元二次方程的概念,一元二次方程(特別是含有字母系數(shù)的)化成一般形式是本節(jié)課的難點。
二、教材處理
在教學(xué)中,我發(fā)現(xiàn)有的學(xué)生對概念背得很熟,但在準(zhǔn)確和熟練應(yīng)用方面較差,缺乏應(yīng)變能力,針對學(xué)生中存在的這些問題,本節(jié)課突出對教學(xué)概念形成過程的教學(xué),采用探索發(fā)現(xiàn)的方法研究概念,并引導(dǎo)學(xué)生進(jìn)行創(chuàng)造性學(xué)習(xí)。
三、教學(xué)方法和學(xué)法
教學(xué)中,我運用啟發(fā)引導(dǎo)的方法讓學(xué)生從一元一次方程入手,類比發(fā)現(xiàn)并歸納出一元二次方程的概念,啟發(fā)學(xué)生發(fā)現(xiàn)規(guī)律,并總結(jié)規(guī)律,最后達(dá)到問題解決。
四、教學(xué)手段
采用投影儀
五、教學(xué)程序
1、新課導(dǎo)入:
(1)什么叫一元一次方程?(并引入一元二次方程的概念做鋪墊)
(2)列方程解應(yīng)用題的方法,步驟?(并引例打基礎(chǔ))
課本引例(如圖)由教師提出并分析其中的數(shù)量關(guān)系。(用實際問題引出一元二次方程,可以幫助學(xué)生認(rèn)識到一元二次方程是來源于客觀需要的)
設(shè)出求知數(shù),列出代數(shù)式,并根據(jù)等量關(guān)系列出方程
數(shù)學(xué)《一元二次方程》教案3三
一、教學(xué)目標(biāo)
1、知識與技能目標(biāo):認(rèn)識一元二次方程,并能分析簡單問題中的數(shù)量關(guān)系列出一元二次方程。
2、過程與方法:學(xué)生通過觀察與模仿, 建立起對一元二次方程的感性認(rèn)識,獲得對代數(shù)式的初步經(jīng)驗,鍛煉抽象思維能力。
3、情感態(tài)度與價值觀:學(xué)生在獨立思考的過程中,能將生活中的經(jīng)驗與所學(xué)的知識結(jié)合起來,形成實事求是的態(tài)度以及進(jìn)行質(zhì)疑和獨立思考的習(xí)慣。
二、教學(xué)重難點
重點:理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標(biāo)準(zhǔn)的一元二次方程。
難點:找對題目中的數(shù)量關(guān)系從而列出一元二次方程。
三、教學(xué)過程
(一)導(dǎo)入新課
師:同學(xué)們我們就要開始學(xué)習(xí)一元二次方程了,在開始講新課之前,我們首先來看一看第二十二章的這張圖片,圖片上有一個銅雕塑,有哪位同學(xué)能告訴我這是誰嗎?
生:老師,這是雷鋒叔叔。
師:對,這是遼寧省撫順市雷鋒紀(jì)念館前的雷鋒雕像,雷鋒叔叔一生樂于助人,奉獻(xiàn)了自己方便了他人,所以即使他去世了,也活在人們心中,所以人們才給他做一個雕塑紀(jì)念他,同學(xué)們是不是也要向雷鋒叔叔學(xué)習(xí)啊?
生:是的老師。
師:可是原來紀(jì)念館的工作人員在建造這座雕像的時候曾經(jīng)遇到了一個問題,也就是圖片下面的這個問題,同學(xué)們想不想為他們解決這個問題呢?
生:想。
師:同學(xué)們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學(xué)習(xí)一元二次方程。
(二)新課教學(xué)
師:我們來看到這個題目,要設(shè)計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應(yīng)設(shè)計為全高?同學(xué)們用ac來表示上部,bc來表示下部先簡單列一下這個比例關(guān)系,待會老師下去看看同學(xué)們的式子。
(下去巡視)
(三)小結(jié)作業(yè)
師:今天大家學(xué)習(xí)了一元二次方程,同學(xué)們回去還要加強(qiáng)鞏固,做練習(xí)題的1、2(2)題。
四、板書設(shè)計
五、教學(xué)反思
數(shù)學(xué)《一元二次方程》教案3二
教學(xué)目標(biāo)
1. 了解整式方程和一元二次方程的概念;
2. 知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3. 通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點和難點:
重點:一元二次方程的概念和它的一般形式。
難點:對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定。
教學(xué)建議:
1. 教材分析:
1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。
2)重點、難點分析
理解一元二次方程的定義:
是一元二次方程 的重要組成部分。方程 ,只有當(dāng) 時,才叫做一元二次方程。如果 且 ,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程 ( ),把它化成一般形式為 ,由于 ,所以 ,符合一元二次方程的定義。
(2)條件是用“關(guān)于 的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關(guān)于 的一元二次方程 ”,這時題中隱含了 的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的 項,且出現(xiàn)“關(guān)于 的方程”這樣的語句,就要對方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于 的方程 ”,這就有兩種可能,當(dāng) 時,它是一元一次方程 ;當(dāng) 時,它是一元二次方程,解題時就會有不同的結(jié)果。
教學(xué)目的
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點和難點:
重點:
1.一元二次方程的有關(guān)概念
2.會把一元二次方程化成一般形式
難點: 一元二次方程的含義.
教學(xué)過程設(shè)計
一、引入新課
引例:剪一塊面積是150cm2的長方形鐵片,使它的長比寬多5cm、這塊鐵片應(yīng)該怎樣剪?
分析:1.要解決這個問題,就要求出鐵片的長和寬。
2.這個問題用什么數(shù)學(xué)方法解決?(間接計算即列方程解應(yīng)用題。
3.讓學(xué)生自己列出方程 ( x(x十5)=150 )
深入引導(dǎo):方程x(x十5)=150有人會解嗎?你能叫出這個方程的名字嗎?
二、新課
1.從上面的引例我們有這樣一個感覺:在解決日常生活的計算問題中確需列方程解應(yīng)用題,但有些方程我們解不了,但必須想辦法解出來。事實上初中代數(shù)研究的主要對象是方程。這部分內(nèi)容從初一一直貫穿到初三。到目前為止我們對方程研究的還很不夠,從今天起我們就開始研究這樣一類方程--------一元一二次方程(板書課題)
2.什么是—元二次方程呢?現(xiàn)在我們來觀察上面這個方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程,就這一點來說它與一元一次方程沒有什么區(qū)別、也就是說一元二次方程首先必須是一個整式方程,但是一個整式方程未必就是一個一元二次方程、這還取決于未知數(shù)的次數(shù)是幾。如果方程未知數(shù)的次數(shù)是2、這樣的整式方程叫做一元二次方程.(板書一元二次方程的定義)
3.強(qiáng)化一元二次方程的概念
下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是一元二次方程?
(1)3x十2=5x—3: (2)x2=4
(2)(x十3)(3x·4)=(x十2)2; (4)(x—1)(x—2)=x2十8
從以上4例讓學(xué)生明白判斷一個方程是否是一元二次方程不能只看表面、而是能化簡必須先化簡、然后再查看這個方程未知數(shù)的次數(shù)是否是2。
4. 一元二次方程概念的延伸
提問:一元二次方程很多嗎?你有辦法一下寫出所有的一元二次方程嗎?
引導(dǎo)學(xué)生回顧一元二次方程的定義,分析一元二次方程項的情況,啟發(fā)學(xué)生運用字母,找到一元二次方程的一般形式
ax2+bx+c=0 (a≠0)
1).提問a=0時方程還是一無二次方程嗎?為什么?(如果a=0、b≠就成了一元一次方程了)。
2).講解方程中ax2、bx、c各項的名稱及a、b的系數(shù)名稱.
3).強(qiáng)調(diào):一元二次方程的一般形式中“=”的左邊最多三項、其中一次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在、而且左邊通常按x的降冪排列:特別注意的是“=”的右邊必須整理成0。
強(qiáng)化概念(課本p6)
1.說出下列一元二次方程的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)x2十3x十2=o (2)x2—3x十4=0; (3)3x2-5=0
(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
課堂小節(jié)
(1)本節(jié)課主要介紹了一類很重要的方程—一一元二次方程(如果方程未知數(shù)的次數(shù)為2,這樣的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左邊最多三項、其中二次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在。特別注意的是“=”的右邊必須整理成0;
(3)要很熟練地說出隨便一個一元二次方程中一二次項、一次項、常數(shù)項:二次項系數(shù)、一次項系數(shù).
方程的根教案篇3
(一)初步培養(yǎng)了學(xué)生平面解析幾何的思想和一般方法。
在初中,學(xué)生熟知一次函數(shù)y=kx+b(也可以看成是二次方程)的圖象是一條直線,但反過來任意畫一條,要同學(xué)們寫出方程表達(dá)式,學(xué)生剛開始會無從下手,從而激發(fā)學(xué)生學(xué)習(xí)的興趣。隨著教學(xué)的展開,讓學(xué)生逐步形成平面解析幾何的方法,如建立坐標(biāo)啊,設(shè)點啊,建立關(guān)系式啊,得出方程啊等等,初步培養(yǎng)學(xué)生的平面解析幾何思維,為后面學(xué)習(xí)圓、橢圓和相關(guān)圓錐曲線打下良好的基礎(chǔ)。
(二)在教學(xué)中貫徹“精講多練”的教學(xué)改革探索。
我們都知道,對于職中的學(xué)生,基礎(chǔ)差,底子薄,理解能力差,動手能力差,要想讓學(xué)生學(xué)有所得,最好的辦法就是精講多練,提高學(xué)生的動手能力。因此在教學(xué)中,我們通常是由練習(xí)引入,簡單講講,一例一練,配以一定的鞏固提高題,最后還有配套作業(yè),做到每個內(nèi)容經(jīng)過三輪的'練習(xí),讓學(xué)生能夠很容易的掌握。
(三)注意數(shù)形結(jié)合的教學(xué)。
解析幾何的特點就是形數(shù)結(jié)合,而形數(shù)結(jié)合的思想是一種重要的數(shù)學(xué)思想,是教學(xué)大綱中要求學(xué)生學(xué)習(xí)的內(nèi)容之一,所以在教學(xué)中要注意這種數(shù)學(xué)思想的教學(xué)。每一種直線方程的講解都進(jìn)行畫圖演示,讓學(xué)生對每一種直線方程所需的條件根深蒂固,如點斜式一定要點和斜率;斜截式一定要斜率和在y軸上的截距;截距式一定要兩個坐標(biāo)軸上的截距等等。并在直線方程的相互轉(zhuǎn)化過程中也配以圖形(請參考一般方程的課件)
(四)注重直線方程的承前啟后的作用。
教材承接了初中函數(shù)的圖像之后,并作為研究曲線(圓、圓錐曲線)之前,以之來介紹平面解析幾何的思想和一般方法,可見本節(jié)內(nèi)容所處的重要地位,學(xué)好直線對以后的學(xué)習(xí)尤為重要, 事實上,教材在研究了直線的方程和討論了直線的幾何性質(zhì)后,緊接著就以直線方程為基礎(chǔ),進(jìn)一步討論曲線與方程的一般概念。
方程的根教案篇4
教學(xué)內(nèi)容:
義務(wù)教育人教版數(shù)學(xué)五年級上冊67頁內(nèi)容。
教學(xué)目標(biāo):
知識目標(biāo):
1、通過演示操作理解天平平衡的原理。
2、初步理解方程的解和解方程的含義。
3、會檢驗一個具體的值是不是方程的解,掌握檢驗的格式。
能力目標(biāo):
1、提高學(xué)生的比較、分析的能力;
2、培養(yǎng)學(xué)生的合作交流的意識。
情感目標(biāo):
1、感受方程與現(xiàn)實生活的聯(lián)系。
2、愿意與別人合作交流。
教學(xué)重點:
理解方程的解和解方程的含義,會檢驗方程的解。
教學(xué)難點:
利用天平平衡的原理來檢驗方程的解。
關(guān)鍵:
天平與方程的聯(lián)系。
教具 :
課件
教學(xué)過程:
一、游戲鋪墊,引出課題(出示課件)
師:明明周末在超市玩起了稱糖果的稱,我們一起合作使稱保持平衡!
師:同學(xué)們反映真敏捷,能通過觀察馬上想出使天平保持平衡的策略。
生:從中你有什么想說的?或者你聯(lián)想到了什么?
生:只要兩邊都拿掉或增加相同數(shù)量的糖果,就能保持平衡;讓我想到了等式的性質(zhì)(全班一起口答:等式兩邊加上或減去同一個數(shù),左右兩邊任然相等;等式兩邊乘同一個數(shù),或除以同一個部位0的數(shù),左右兩邊任然相等)(板書“等式性質(zhì)”)
師過渡:是的,知識就是這樣被有心人所發(fā)現(xiàn)的。
二、探究新知
師:這里有個紙箱里面裝著一些足球,你猜會有幾個呢?(課件逐步出示)
再給你點信息,這幅圖誰能用一個方程來表示。
生列方程,并說說你是怎么想的。
1、解方程
師:在這個方程中,x的值是多少呢?(學(xué)生思考,小范圍交流)
匯報預(yù)設(shè):①因為9-3=6②因為6+3=9所以x的值為6 所以x的值為6 (多少)
師引導(dǎo):當(dāng)然,我知道這么簡單的問題是難不住大家的,但是我們的思考不能停止,從今天開始我們將學(xué)習(xí)怎樣利用天平保持平衡的原理來尋求x的值,這種思考的方法到初中遇上更加復(fù)雜的方程時仍然會用到。
師:現(xiàn)在我們就將x+3=9這個方程轉(zhuǎn)換到天平上來?(黑板貼圖)
師:球在天平不好擺,我們可以用方塊來代替它。
自主嘗試:看著天平,如何去尋求x的值?
請用筆記錄下你的想法。
組織好語言上臺匯報你的想法。
教師統(tǒng)一書寫:
師介紹:求解x的過程我們在最前面寫“解”字。(板書寫“解”字)
追問:兩邊都拿掉3個,天平還能平衡嗎,兩邊還相等嗎?(貼圖展示)
為什么要減3個?(可以方程的一邊只剩x,就可以知道x=?)(再叫2-3個)
生活動:我們看著板書來說說是怎么成功得到x的值,每一步的依據(jù)是什么。(2-3個)
你學(xué)會了嗎?趕緊和你的同桌說一說方法。
2、強(qiáng)調(diào)格式:
師:這個求解的過程和以前遞等式有什么區(qū)別或相同的地方?
生:等號對齊;等號兩邊都要寫;最前面要寫解字
3、練習(xí)一:
師:按照大家借助天平運用等式性質(zhì)的想法,就是說當(dāng)我們遇到方程33+x=65你也能求解? 解:33+x○( )=65○( )
x=( ) 那么x-4.5=10 呢?(學(xué)生獨立嘗試,一個學(xué)生板演)
生完成填空和獨立節(jié)解方程。(課件中校對)
4、介紹概念:像這些(課件中圈出來),使方程左右兩邊相等的未知數(shù)的值,
叫“方程的解”;舉例:x=3是方程x+3=9的解??
而求方程的解的過程,我們叫“解方程”(板書)
這些知識在數(shù)中有介紹,我們找到劃一劃讀一讀。(看書)
兩個詞都有解字,有什么區(qū)別呢?(“方程的解”中的“解”是名詞,它指能使方程左右兩邊相等的未知數(shù)的值,是一個數(shù)值;“解方程”中的“解”是動詞,它指求方程解的過程,是一個演算的過程.)
5、驗算:
師:剛才我們解出來x的值是不是正確的答案呢?你打算怎么檢驗?
生:放進(jìn)去計算一下。
師:大家心里都有了想法,但方程的檢驗也是有一定格式的,下面我們到書本中來學(xué)習(xí)一下。 生自學(xué)書本后回答:根據(jù)等式性質(zhì),把x=6代入方程,看方程左右兩邊是否相等。 生活動:嘗試驗算一個方程的解,另一個放心里代入驗算。
6、小結(jié)
師:你學(xué)會了嗎?你會解怎樣的方程了?(含加法或減法)
解方程的步驟?(結(jié)合板書和課件)
生:解方程的步驟:
a)先寫“解:”。
b)方程左右兩邊同時加或減一個相同的數(shù),使方程左邊只剩x,方程左右兩邊相等。 c)求出x的值。
d)驗算。
四、鞏固練習(xí)
練習(xí)二:解方程比賽(書p67)
(1)100+x=250(2)x+12=31※(3) x -63=36
練習(xí)三:我是小法官:1.x=10是方程5+x=15的解( )。
2.x=10是方程x-5=15的解( )。
3. x=3是方程5x=15的解( )。
4.下面兩位同學(xué)誰對誰錯?
x-1.2=4 x+2.4=4.6
解:x-1.2+1.2=4-1.2=4.6-2.4
x=2.8 =2.2
師:談?wù)勀阌X得解方程過程中有什么要提醒大家注意的?
生:注意等式性質(zhì)的正確運用!注意解方程時的格式!
練習(xí)四:看圖列方程并求解
五、課堂總結(jié)
師:我們這節(jié)課學(xué)習(xí)了什么?和大家來分享下!
板書設(shè)計:
解方程(含有加法或減法) 等式性質(zhì) 解:x+3-3 =9-解方程 (過程)學(xué)生板演天平貼圖
x=6 ?解 (值)檢驗:方程左邊=x+3
=6+3
=9
=方程右邊
所以,x=6是方程的解。
方程的根教案篇5
教學(xué)目的
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點和難點:
重點:
1.一元二次方程的有關(guān)概念
2.會把一元二次方程化成一般形式
難點:一元二次方程的含義.
教學(xué)過程設(shè)計
一、引入新課
引例:剪一塊面積是150cm2的長方形鐵片,使它的長比寬多5cm、這塊鐵片應(yīng)該怎樣剪?
分析:1.要解決這個問題,就要求出鐵片的長和寬。
2.這個問題用什么數(shù)學(xué)方法解決?(間接計算即列方程解應(yīng)用題。
3.讓學(xué)生自己列出方程( x(x十5)=150 )
深入引導(dǎo):方程x(x十5)=150有人會解嗎?你能叫出這個方程的名字嗎?
二、新課
1.從上面的引例我們有這樣一個感覺:在解決日常生活的計算問題中確需列方程解應(yīng)用題,但有些方程我們解不了,但必須想辦法解出來。事實上初中代數(shù)研究的主要對象是方程。這部分內(nèi)容從初一一直貫穿到初三。到目前為止我們對方程研究的還很不夠,從今天起我們就開始研究這樣一類方程--------一元一二次方程(板書課題)
2.什么是—元二次方程呢?現(xiàn)在我們來觀察上面這個方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程,就這一點來說它與一元一次方程沒有什么區(qū)別、也就是說一元二次方程首先必須是一個整式方程,但是一個整式方程未必就是一個一元二次方程、這還取決于未知數(shù)的次數(shù)是幾。如果方程未知數(shù)的次數(shù)是2、這樣的整式方程叫做一元二次方程.(板書一元二次方程的定義)
3.強(qiáng)化一元二次方程的概念
下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是一元二次方程?
(1)3x十2=5x—3:(2)x2=4
(2)(x十3)(3x·4)=(x十2)2; (4)(x—1)(x—2)=x2十8
從以上4例讓學(xué)生明白判斷一個方程是否是一元二次方程不能只看表面、而是能化簡必須先化簡、然后再查看這個方程未知數(shù)的.次數(shù)是否是2。
4.一元二次方程概念的延伸
提問:一元二次方程很多嗎?你有辦法一下寫出所有的一元二次方程嗎?
引導(dǎo)學(xué)生回顧一元二次方程的定義,分析一元二次方程項的情況,啟發(fā)學(xué)生運用字母,找到一元二次方程的一般形式
ax2+bx+c=0 (a≠0)
1).提問a=0時方程還是一無二次方程嗎?為什么?(如果a=0、b≠就成了一元一次方程了)。
2).講解方程中ax2、bx、c各項的名稱及a、b的系數(shù)名稱.
3).強(qiáng)調(diào):一元二次方程的一般形式中“=”的左邊最多三項、其中一次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在、而且左邊通常按x的降冪排列:特別注意的是“=”的右邊必須整理成0。
強(qiáng)化概念(課本p6)
1.說出下列一元二次方程的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)x2十3x十2=o (2)x2—3x十4=0; (3)3x2-5=0
(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
課堂小節(jié)
(1)本節(jié)課主要介紹了一類很重要的方程—一一元二次方程(如果方程未知數(shù)的次數(shù)為2,這樣的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左邊最多三項、其中二次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在。特別注意的是“=”的右邊必須整理成0;
(3)要很熟練地說出隨便一個一元二次方程中一二次項、一次項、常數(shù)項:二次項系數(shù)、一次項系數(shù).