勾股定理教學(xué)教學(xué)反思7篇

時(shí)間:2023-01-10 作者:Indulgence 教學(xué)計(jì)劃

我們?cè)趯懡虒W(xué)反思的時(shí)候,也要形成自己的教學(xué)特點(diǎn),如果沒(méi)有將教學(xué)反思寫得具體,那我們的教學(xué)就無(wú)法得到明顯提升,下面是范文社小編為您分享的勾股定理教學(xué)教學(xué)反思7篇,感謝您的參閱。

勾股定理教學(xué)教學(xué)反思7篇

勾股定理教學(xué)教學(xué)反思篇1

這次展示課,我上的是八年級(jí)數(shù)學(xué)課《17.2勾股定理的逆定理》,我是根據(jù)“五步三查”課堂模式來(lái)設(shè)計(jì)“導(dǎo)學(xué)案”和組織教學(xué)的。 這次課相對(duì)于過(guò)去基礎(chǔ)上的課堂改革是完全不同的課,其進(jìn)步之處之一是規(guī)范了課堂的結(jié)構(gòu),明確了課堂模式“五步三查”,操作上更能心中有數(shù)。進(jìn)步之二是發(fā)揮學(xué)生的積極性方式與手段更多些,“老師需要什么?就評(píng)價(jià)什么”,進(jìn)行了有益的嘗試,將評(píng)價(jià)納入整個(gè)課堂,如何通過(guò)開(kāi)展小組的評(píng)比與競(jìng)賽調(diào)動(dòng)學(xué)生積極性及學(xué)習(xí)氛圍積累了經(jīng)驗(yàn)。進(jìn)步之三是“導(dǎo)學(xué)案”的編寫上更適和學(xué)生,更有利于對(duì)課堂的指導(dǎo)。進(jìn)步之四是課堂效率和課堂效果更好。進(jìn)步之五學(xué)生的主體作用得到了真正的體現(xiàn)。進(jìn)步之六是課堂不僅成了學(xué)習(xí)知識(shí)的地方,更是增進(jìn)情感、培養(yǎng)能力的地方。

這次展示課也有待改進(jìn)的地方,其一是“五步三查”模式操作細(xì)節(jié)不清楚,對(duì)整個(gè)操作流程理解不到位,導(dǎo)致整個(gè)課堂有些亂,因不能多講,又不放心學(xué)生學(xué)。其二是學(xué)生的能力培養(yǎng)還應(yīng)下大功夫,過(guò)去是以老師講為主,學(xué)生只是聽(tīng)記,現(xiàn)在要他們自學(xué)、討論,同學(xué)們還不習(xí)慣,導(dǎo)致課堂有些沉悶。其三是時(shí)間緊,教學(xué)任務(wù)完不成,課堂的知識(shí)掌握度、能力目標(biāo)達(dá)成度較低。其四是“五步三查”各細(xì)節(jié)的科學(xué)性、有效性落實(shí),有許多細(xì)節(jié)的落實(shí)與協(xié)調(diào)有待深化,如如何評(píng)價(jià)?如何有效利用評(píng)價(jià)得分?如何有效獨(dú)學(xué)?其五是“導(dǎo)學(xué)案”如何更科學(xué)編制?體現(xiàn)分層同時(shí)又能更有利于指導(dǎo)學(xué)生的學(xué),也有利于指導(dǎo)教師的教。其六更主要的是老師的觀念,樹(shù)立學(xué)生為主體的觀念,將學(xué)生發(fā)展落實(shí)到教育教學(xué)各環(huán)節(jié)這才是根本。勇于變革和創(chuàng)新,積極研究和實(shí)踐才能保障我們的課堂改革更順利推進(jìn)。雖然存在這樣多,或更多的問(wèn)題,但對(duì)其前景我們每一個(gè)人都充滿了信心,我們相信只有這樣做才能真正達(dá)到教育的目標(biāo)。

勾股定理教學(xué)教學(xué)反思篇2

對(duì)于“勾股定理的應(yīng)用”的反思和小結(jié)有以下幾個(gè)方面:

1、課前準(zhǔn)備不充分:

基礎(chǔ)題中是一些由正方形和直角三角形拼合而成的圖形(與希臘郵票設(shè)計(jì)原理相同),其中兩個(gè)正方形的面積分別是14和18,求最大的正方形的面積。

分析:由勾股定理結(jié)論:直角三角形中兩直角邊的平方和等于斜邊的平方。

其實(shí)質(zhì)即以直角三角形兩直角邊為邊長(zhǎng)的兩個(gè)正方形面積之和等于以斜邊為邊長(zhǎng)的正方形的面積。但學(xué)生竟然不知道。其二是課件準(zhǔn)備不充分,其中有一道例題的答案是跟著例題同時(shí)出現(xiàn)的,再去修改,又浪費(fèi)了一點(diǎn)時(shí)間。其三,用面積法求直角三角形的高,我認(rèn)為是一個(gè)非常簡(jiǎn)單的數(shù)學(xué)問(wèn)題,但在實(shí)際教學(xué)中,發(fā)現(xiàn)很多學(xué)生仍然很難理解,說(shuō)明我在備課時(shí)備學(xué)生不充分,沒(méi)有站在學(xué)生的角度去考慮問(wèn)題。

2、課堂上的語(yǔ)言應(yīng)該簡(jiǎn)練。這是我上課的最大弱點(diǎn),我不敢放手讓學(xué)生去獨(dú)立思考問(wèn)題,會(huì)去重復(fù)題目意思,實(shí)際上不需要的,可以留時(shí)間讓學(xué)生去獨(dú)立思考。教師是無(wú)法代替學(xué)生自己的思考的,更不能代替幾十個(gè)有差異的學(xué)生的思維。課堂上老師放一放,學(xué)生得到的更多,老師放多少,學(xué)生就有多大的自主發(fā)展的空間。但這里的“放多少”是一門藝術(shù),我要好好向老教師學(xué)習(xí)!

3、鼓勵(lì)學(xué)生的藝術(shù)。教師要鼓勵(lì)學(xué)生嘗試并尊重他們不完善的甚至錯(cuò)誤的意見(jiàn),經(jīng)常鼓勵(lì)他們大膽說(shuō)出自己的想法,大膽發(fā)表自己的見(jiàn)解,真正體現(xiàn)出學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人。

4、啟發(fā)學(xué)生的技巧有待提高。啟發(fā)學(xué)生也是一門藝術(shù),我的課堂上有點(diǎn)啟而不發(fā)。課堂上應(yīng)該多了解學(xué)生。

勾股定理教學(xué)教學(xué)反思篇3

一、教學(xué)的成功體驗(yàn)

?數(shù)學(xué)課程標(biāo)準(zhǔn)》明確指出:“有效的數(shù)學(xué)活動(dòng)不能單純地依賴于模仿與記憶,學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式是動(dòng)手實(shí)踐、自主探索與合作交流,以促進(jìn)學(xué)生自主、全面、可持續(xù)發(fā)展”。數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),是師生之間、學(xué)生之間相互交往、積極互動(dòng)、共同發(fā)展的過(guò)程,是“溝通”與“合作”的過(guò)程。本節(jié)課我結(jié)合勾股定理的歷史和畢答哥拉斯的發(fā)現(xiàn)直角三角形的特性自然地引入了課題,讓學(xué)生親身體驗(yàn)到數(shù)學(xué)知識(shí)來(lái)源于實(shí)踐,從而激發(fā)學(xué)生的學(xué)習(xí)積極性。為學(xué)生提供了大量的操作、思考和交流的學(xué)習(xí)機(jī)會(huì),通過(guò)“觀察“——“操作”——“交流”發(fā)現(xiàn)勾股定理。層層深入,逐步體會(huì)數(shù)學(xué)知識(shí)的產(chǎn)生、形成、發(fā)展與應(yīng)用過(guò)程。通過(guò)引導(dǎo)學(xué)生在具體操作活動(dòng)中進(jìn)行獨(dú)立思考,鼓勵(lì)學(xué)生發(fā)表自己的見(jiàn)解,學(xué)生自主地發(fā)現(xiàn)問(wèn)題、探索問(wèn)題、獲得結(jié)論的學(xué)習(xí)方式,有利于學(xué)生在活動(dòng)中思考,在思考中活動(dòng)。

二、信息技術(shù)與學(xué)科的整合

在信息社會(huì),信息技術(shù)與課程的整合必將帶來(lái)教育者的深刻變化。我充分地利用多媒體教學(xué),為學(xué)生創(chuàng)設(shè)了生動(dòng)、直觀的現(xiàn)實(shí)情景,具有強(qiáng)列的吸引力,能激發(fā)學(xué)生的學(xué)習(xí)欲望。心理學(xué)專家研究表明:運(yùn)動(dòng)的圖形比靜止的圖形更能引起學(xué)生的注意力。在傳統(tǒng)教學(xué)中,用筆、尺和圓規(guī)在紙上或黑板上畫出的圖形都是

靜止圖形,同時(shí)圖形一旦畫出就被固定下來(lái),也就是失去了一般性,所以其中的數(shù)學(xué)規(guī)律也被掩蓋了,呈現(xiàn)給學(xué)生的數(shù)學(xué)知識(shí)也只能停留在感性認(rèn)識(shí)上。本節(jié)課我通過(guò)flash動(dòng)畫演示結(jié)果和拼圖程以及呈現(xiàn)教學(xué)內(nèi)容。真正體現(xiàn)數(shù)學(xué)規(guī)律的應(yīng)用價(jià)值。把呈現(xiàn)給學(xué)生的數(shù)學(xué)知識(shí)從感性認(rèn)識(shí)提升到理性認(rèn)識(shí),實(shí)現(xiàn)一種質(zhì)的飛躍。

勾股定理教學(xué)教學(xué)反思篇4

勾股定理整章書的內(nèi)容很少,就勾股定理和勾股定理的逆定理,這節(jié)課是勾股定理的第一課時(shí),本節(jié)課主要是和學(xué)生一起探究勾股地理的認(rèn)識(shí)。在教學(xué)的過(guò)程中感覺(jué)有幾個(gè)方面需要轉(zhuǎn)變的。

一 、轉(zhuǎn)變師生角色,讓學(xué)生自主學(xué)習(xí)。由于高效課堂中教學(xué)模式需要進(jìn)行學(xué)生自主討論交流學(xué)習(xí),在探究勾股定理的發(fā)現(xiàn)時(shí)分四人一小組由同學(xué)們合作探討作圖,去發(fā)現(xiàn)有的直角三角形的三邊具有這種關(guān)系,有的'直角三角形不具有這種性質(zhì)??扇匀蛔C明不了我們的猜想是否正確。之后用拼圖的方法再來(lái)驗(yàn)證一下。讓學(xué)生們拿出準(zhǔn)備好的直角三角形和正方形,利用拼圖和面積計(jì)算來(lái)證明 + = (學(xué)生分組討論。)學(xué)生展示拼圖方法,課件輔助演示。 新課標(biāo)下要求教師個(gè)人素質(zhì)越來(lái)越高,教師自身要不斷及時(shí)地學(xué)習(xí)學(xué)科專業(yè)知識(shí),接受新信息,對(duì)自己及時(shí)充電、更新,而且要具有幽默藝術(shù)的語(yǔ)言表達(dá)能力。既要有領(lǐng)導(dǎo)者的組織指導(dǎo)能力,更重要的是要有被學(xué)生欣賞佩服的魅力,只有學(xué)生配合你,信任你,喜歡你,教師才能輕松駕御課堂,做到應(yīng)付自如,高效率完成教學(xué)目標(biāo)。 “教師教,學(xué)生聽(tīng),教師問(wèn),學(xué)生答,教室出題,學(xué)生做”的傳統(tǒng)教學(xué)摸模式,已嚴(yán)重阻阻礙了現(xiàn)代教育的發(fā)展。這種教育模式,不但無(wú)法培養(yǎng)學(xué)生的實(shí)踐能力,而且會(huì)造成機(jī)械的學(xué)習(xí)知識(shí),形成懶惰、空洞的學(xué)習(xí)態(tài)度,形成數(shù)學(xué)的呆子,就像有的大學(xué)畢業(yè)生都不知道1平方米到底有多大?因此,高效課堂上要求老師一定要改變角色,把主動(dòng)權(quán)交給學(xué)生,讓學(xué)生提出問(wèn)題,動(dòng)手操作,小組討論,合作交流,把學(xué)生想到的,想說(shuō)的想法和認(rèn)識(shí)都讓他們盡情地表達(dá),然后教師再進(jìn)行點(diǎn)評(píng)與引導(dǎo),這樣做會(huì)有許多意外的收獲,而且能充分發(fā)揮挖掘每個(gè)學(xué)生的潛能,久而久之,學(xué)生的綜合能力就會(huì)與日劇增。

二、轉(zhuǎn)變教學(xué)方式,讓學(xué)生探索、研究、體會(huì)學(xué)習(xí)過(guò)程。 學(xué)生學(xué)會(huì)了數(shù)學(xué)知識(shí),卻不會(huì)解決與之有關(guān)的實(shí)際問(wèn)題,造成了知識(shí)學(xué)習(xí)和知識(shí)應(yīng)用的脫節(jié),感受不到數(shù)學(xué)與生活的聯(lián)系,這是當(dāng)今課堂教學(xué)存在的普遍問(wèn)題,對(duì)于我們這兒的學(xué)生起點(diǎn)低、數(shù)學(xué)基礎(chǔ)差、實(shí)踐能力差,對(duì)學(xué)生的各種能力培養(yǎng)非常不利的。課堂中要特別關(guān)注:

1、關(guān)注學(xué)生是否積極參加探索勾股定理的活動(dòng),關(guān)注學(xué)生能否在活動(dòng)中積思考,能夠探索出解決問(wèn)題的方法,能否進(jìn)行積極的聯(lián)想(數(shù)形結(jié)合)以及學(xué)生能否有條理的表達(dá)活動(dòng)過(guò)程和所獲得的結(jié)論等;

2、關(guān)注學(xué)生的拼圖過(guò)程,鼓勵(lì)學(xué)生結(jié)合自己所拼得的正方形驗(yàn)證勾股定理。

3、學(xué)習(xí)的知識(shí)性:掌握勾股定理,體會(huì)數(shù)形結(jié)合的思想。

三、提高教學(xué)科技含量,充分利用多媒體。 勾股定理知識(shí)屬于幾何內(nèi)容,而幾何圖形可以直觀地表示出來(lái),學(xué)生認(rèn)識(shí)圖形的初級(jí)階段中主要依靠形象思維。對(duì)幾何圖形的認(rèn)識(shí)始于觀察、測(cè)量、比較等直觀實(shí)驗(yàn)手段,現(xiàn)代兒童認(rèn)識(shí)幾何圖形亦如此,可以通過(guò)直觀實(shí)驗(yàn)了解幾何圖形,發(fā)現(xiàn)其中的規(guī)律。然而,因?yàn)閹缀螆D形本身具有抽象性和一般性,一種幾何概念可能包含無(wú)限多種不同的情形,例如有無(wú)數(shù)種形狀不同的三角形。對(duì)一種幾何概念所包含的一部分具體對(duì)象進(jìn)行直觀實(shí)驗(yàn)所得到的認(rèn)識(shí),一定適合其他情況驗(yàn)回答不了的問(wèn)題。因此,一般地,研究圖形的形狀、大小和位置。 培養(yǎng)邏輯推理能力,作了認(rèn)真的考慮和精心的設(shè)計(jì),把推理證明作為學(xué)生觀察、實(shí)驗(yàn)、探究得出結(jié)論的自然延續(xù)。教科書的幾何部分,要先后經(jīng)歷“說(shuō)點(diǎn)兒理”“說(shuō)理”“簡(jiǎn)單推理”幾個(gè)層次,有意識(shí)地逐步強(qiáng)化關(guān)于推理的初步訓(xùn)練,主要做法是在問(wèn)題的分析中強(qiáng)調(diào)求解過(guò)程所依據(jù)的道理,體現(xiàn)事出有因、言之有據(jù)的思維習(xí)慣。 由于信息技術(shù)的發(fā)展與普及,直觀實(shí)驗(yàn)手段在教學(xué)中日益增加,本節(jié)課利用我們學(xué)校建立了電教教室,通過(guò)制作課件對(duì)于幾何學(xué)的學(xué)習(xí)起到積極作用。

勾股定理教學(xué)教學(xué)反思篇5

我用了4課時(shí)講授了八年級(jí)下冊(cè)數(shù)學(xué)人教版的第十八章第一節(jié)勾股定理,第一課時(shí)我主要講授的是勾股定理的探究和驗(yàn)證,并舉例計(jì)算有關(guān)直角三角形已知兩邊長(zhǎng)求第三邊的問(wèn)題;第二課時(shí)我主要講授了各種類型的有關(guān)直角三角形邊長(zhǎng)或者面積相關(guān)問(wèn)題;第三課時(shí)講授了如何用勾股定理解決生活中的實(shí)際問(wèn)題;第四課時(shí)主要講授了怎樣在數(shù)軸上找出無(wú)理數(shù)對(duì)應(yīng)的點(diǎn)。這4個(gè)課時(shí)我采用的教學(xué)方法是:引導(dǎo)—探究—發(fā)現(xiàn)法;為學(xué)生設(shè)計(jì)的學(xué)習(xí)方法是:自主探究與合作交流相結(jié)合。

第一課時(shí)的課堂教學(xué)中,我始終注意了調(diào)動(dòng)學(xué)生的積極性.興趣是最好的老師,所以無(wú)論是引入、拼圖,還是歷史回顧,我都注意去調(diào)動(dòng)學(xué)生,讓學(xué)生滿懷激情地投入到活動(dòng)中.因此,課堂效率較高.勾股定理作為“千古第一定理”,其魅力在于其歷史價(jià)值和應(yīng)用價(jià)值,因此我注意充分挖掘了其內(nèi)涵.特別是讓學(xué)生事先進(jìn)行調(diào)查,再在課堂上進(jìn)行展示,這極大地調(diào)動(dòng)了學(xué)生,既加深了對(duì)勾股定理文化的理解,又培養(yǎng)了他們收集、整理資料的能力.勾股定理的驗(yàn)證既是本節(jié)課的重點(diǎn),也是本節(jié)課的難點(diǎn),為了突破這一難點(diǎn),我設(shè)計(jì)了拼圖活動(dòng),并自制精巧的課件讓學(xué)生從形上感知,再層層設(shè)問(wèn),從面積(數(shù))入手,師生共同探究突破了本節(jié)課的難點(diǎn).

第二課時(shí)我依據(jù)“學(xué)生是學(xué)習(xí)的主體”這一理念,在探索勾股定理的整個(gè)過(guò)程中,本節(jié)課始終采用學(xué)生自主探索和與同伴合作交流相結(jié)合的方式進(jìn)行主動(dòng)學(xué)習(xí)。教師只在學(xué)生遇到困難時(shí),進(jìn)行引導(dǎo)或組織學(xué)生通過(guò)討論來(lái)突破難點(diǎn)。為了讓學(xué)生在學(xué)習(xí)過(guò)程中自我發(fā)現(xiàn)勾股定理,本節(jié)課首先情景創(chuàng)設(shè)激發(fā)興趣,再通過(guò)幾個(gè)探究活動(dòng)引導(dǎo)學(xué)生從探究等腰直角三角形這一特殊情形入手,自然過(guò)渡到探究一般直角三角形,學(xué)生通過(guò)觀察圖形,計(jì)算面積,分析數(shù)據(jù),發(fā)現(xiàn)直角三角形三邊的關(guān)系,進(jìn)而得到勾股定理.

第三課時(shí)在課堂教學(xué)中,始終注重學(xué)生的自主探究,由實(shí)例引入,激發(fā)了學(xué)生的學(xué)習(xí)興趣,然后通過(guò)動(dòng)手操作、大膽猜想、勇于驗(yàn)證等一系列自主探究、合作交流活動(dòng)得出定理,并運(yùn)用定理進(jìn)一步鞏固提高,切實(shí)體現(xiàn)了學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人的新課程理念。對(duì)于拼圖驗(yàn)證,學(xué)生還沒(méi)有接觸過(guò),所以,教學(xué)中,教師給予了學(xué)生適當(dāng)?shù)闹笇?dǎo)與鼓勵(lì),教師較好地充當(dāng)了學(xué)生數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者、合作者。另外教會(huì)學(xué)生思維,培養(yǎng)學(xué)生多種能力。課前查資料,培養(yǎng)了學(xué)生的自學(xué)能力及歸類總結(jié)能力;課上的探究培養(yǎng)了學(xué)生的動(dòng)手動(dòng)腦的能力、觀察能力、猜想歸納總結(jié)的能力、合作交流的能力……但本節(jié)課拼圖驗(yàn)證的方法以前學(xué)生沒(méi)接觸過(guò),稍嫌吃力。因此,在今后的教學(xué)中還需要進(jìn)一步關(guān)注學(xué)生的實(shí)驗(yàn)操作活動(dòng),提高其實(shí)踐能力。

第四課時(shí)我另外向?qū)W生介紹了勾股定理的證明方法:以趙爽的“弦圖”為代表,用幾何圖形的截、割、拼、補(bǔ),來(lái)證明代數(shù)式之間的恒等關(guān)系;以歐幾里得的證明方法為代表,運(yùn)用歐氏幾何的基本定理進(jìn)行證明;以劉徽的“青朱出入圖”為代表,“無(wú)字證明”。

總的來(lái)看,學(xué)生掌握的情況比較好,都能夠達(dá)到預(yù)期要求,但介于有關(guān)勾股定理的類型題很多,不能一一為學(xué)生講解,但我還是建議將北師大版本中的《螞蟻怎樣走最近》的類型題加入本教材。

勾股定理教學(xué)教學(xué)反思篇6

勾股定理的探索和證明蘊(yùn)含豐富的數(shù)學(xué)思想和研究方法,是培養(yǎng)學(xué)生思維品質(zhì)的載體。它對(duì)數(shù)學(xué)發(fā)展具有重要作用。勾股定理是一壇陳年佳釀,品之芬芳,余味無(wú)窮,以簡(jiǎn)潔優(yōu)美的形式,豐富深刻的內(nèi)涵刻畫了自然界和諧統(tǒng)一關(guān)系,是數(shù)形結(jié)合的優(yōu)美典范。教學(xué)中我以教師為主導(dǎo),以學(xué)生為主體,以知識(shí)為載體,以培養(yǎng)能力為重點(diǎn)。為學(xué)生創(chuàng)設(shè)“做數(shù)學(xué)、玩數(shù)學(xué)”的教學(xué)情境,讓學(xué)生從“學(xué)會(huì)”到“會(huì)學(xué)”,從“會(huì)學(xué)”到“樂(lè)學(xué)”。

1、查資料

我讓學(xué)生課前查閱有關(guān)勾股定理資料,學(xué)生對(duì)勾股定理歷史背景有初步了解,學(xué)生充滿自信迎接新知識(shí)《勾股定理》學(xué)習(xí)的挑戰(zhàn)。

學(xué)生查得資料:世界許多科學(xué)家尋找“外星人”。1820年,德國(guó)數(shù)學(xué)家高斯提出,在西伯利亞森林伐出直角三角形空地,在空地種上麥子,以三角形三邊為邊種上三片正方形松樹(shù)林,如果有外星人路過(guò)地球附近,看到這個(gè)巨大數(shù)學(xué)圖形,便知道:這個(gè)星球上有智慧生命。我國(guó)數(shù)學(xué)家華羅庚提出:要溝通兩個(gè)不同星球的信息交往,最好利用太空飛船帶上這個(gè)圖形,并發(fā)射到太空中去。

2、講故事

畢達(dá)哥拉斯是古希臘數(shù)學(xué)家。相傳2500年前,畢達(dá)哥拉斯在朋友家做客,發(fā)現(xiàn)朋友家用地磚鋪成地面反映了直角三角形三邊的數(shù)量關(guān)系。

我講畢達(dá)哥拉斯故事,提出問(wèn)題。學(xué)生獨(dú)立思考,提出猜想。我配合演示,使問(wèn)題形象、具體。教學(xué)活動(dòng)從“數(shù)小方格”開(kāi)始,起點(diǎn)低、趣味性濃。學(xué)生在偉人故事中進(jìn)行數(shù)學(xué)問(wèn)題的討論和探索。平淡無(wú)奇現(xiàn)象中隱藏深刻道理。

3、提問(wèn)題

“問(wèn)題是思維的起點(diǎn)”,一段生動(dòng)有趣的動(dòng)畫,點(diǎn)燃學(xué)生求知欲,以景激情,以情激思,引領(lǐng)學(xué)生進(jìn)入學(xué)習(xí)情境,學(xué)生帶著問(wèn)題進(jìn)課堂。

例如:一架長(zhǎng)為10m的梯子ab斜靠在墻上,若梯子的頂端距地面的垂直距離為8m。如果梯子的頂端下滑2m,那么它的底端是否也滑動(dòng)2m?

盡管學(xué)生講的不完全正確,但培養(yǎng)了學(xué)生運(yùn)用數(shù)學(xué)語(yǔ)言進(jìn)行抽象、概括的能力,學(xué)生經(jīng)歷了應(yīng)用勾股定理解決問(wèn)題的思考過(guò)程,學(xué)生增長(zhǎng)了知識(shí),學(xué)生增長(zhǎng)了智慧。

例如:《九章算術(shù)》記載有趣問(wèn)題:有一個(gè)水池,水面是邊長(zhǎng)為10尺的正方形,在水池的中央有一根新生蘆葦,它高出水面1尺,若把這根蘆葦拉向岸邊,它的頂端恰好到達(dá)岸邊的水面,問(wèn)這個(gè)水池深度和這根蘆葦長(zhǎng)度各是多少?

我通過(guò)“著名問(wèn)題”探究,讓學(xué)生了解勾股定理的古老與神奇。問(wèn)題本身具有極大挑戰(zhàn)性,激發(fā)了學(xué)生強(qiáng)烈求知欲,激發(fā)了學(xué)生探究知識(shí)的愿望。學(xué)生討論交流,發(fā)現(xiàn)用代數(shù)觀點(diǎn)證明幾何問(wèn)題的思路。我配以演示,分散了難點(diǎn),培養(yǎng)了學(xué)生發(fā)散思維、探究數(shù)學(xué)問(wèn)題的能力。

4、講證法

我拋磚引玉介紹趙爽弦圖,趙爽用幾何圖形截、割、拼、補(bǔ)證明代數(shù)恒等關(guān)系,具有嚴(yán)密性,直觀性,是中國(guó)古代以形證數(shù)、形數(shù)統(tǒng)一的典范。趙爽指出:四個(gè)全等直角三角形拼成一個(gè)中空的正方形,大正方形面積等于小正方形面積與4個(gè)三角形面積和。 “趙爽弦圖”表現(xiàn)了我國(guó)古代人對(duì)數(shù)學(xué)的鉆研精神和聰明才智,它是我國(guó)數(shù)學(xué)的驕傲。這個(gè)圖案被選為20xx年北京召開(kāi)的國(guó)際數(shù)學(xué)家大會(huì)會(huì)徽。

隨后展示了美國(guó)總統(tǒng)證法。1876年4月1日,美國(guó)伽菲爾德在《新英格蘭教育日志》發(fā)表勾股定理的證法。1881年,伽菲爾德就任美國(guó)總統(tǒng),為了紀(jì)念他直觀、簡(jiǎn)捷、易懂、明了的證明,這一證法被稱為“總統(tǒng)”證法。我感覺(jué)學(xué)生是小小發(fā)明家。學(xué)生在建構(gòu)知識(shí)的同時(shí),欣賞作品享受成功的喜悅。

5、巧設(shè)計(jì)

練習(xí)設(shè)計(jì)我立足鞏固,著眼發(fā)展,兼顧差異,滿足學(xué)生渴望發(fā)展要求。練習(xí)有基礎(chǔ)訓(xùn)練,變式訓(xùn)練,中考試題,引出勾股樹(shù),學(xué)生驚嘆奇妙的數(shù)學(xué)美。課內(nèi)知識(shí)向課外知識(shí)延伸,打開(kāi)了學(xué)生思路,給學(xué)生提供了廣闊空間。數(shù)學(xué)教學(xué)變得生機(jī)勃勃,學(xué)生喜歡數(shù)學(xué),熱愛(ài)數(shù)學(xué)。

我讓學(xué)生講解搜集資料,豐富了學(xué)生背景知識(shí),體現(xiàn)了自主學(xué)習(xí)方式。我對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育,激發(fā)了學(xué)生民族自豪感和奮發(fā)向上學(xué)習(xí)精神。我讓學(xué)生欣賞豐富多彩的數(shù)學(xué)文化,展示五彩斑斕的文化背景,激發(fā)了學(xué)生的愛(ài)國(guó)熱情。

6、善總結(jié)

課堂小結(jié)是對(duì)教學(xué)內(nèi)容的回顧,是對(duì)數(shù)學(xué)思想、方法的總結(jié)。我強(qiáng)調(diào)重點(diǎn)內(nèi)容,注重知識(shí)體系的形成,培養(yǎng)了學(xué)生反思習(xí)慣。

我還想對(duì)同學(xué)們說(shuō):牛頓——從蘋果落地最終確立了萬(wàn)有引力定律,我們——從朝夕相處的三角板發(fā)現(xiàn)了勾股定理,雖然兩者尚不可同日而語(yǔ),但探索和發(fā)現(xiàn)——終有價(jià)值,也許就在身邊,也許就在眼前,還隱藏著無(wú)窮的“萬(wàn)有引力定律”和“勾股定理”……

祝愿同學(xué)們,修得一個(gè)用數(shù)學(xué)思維思考世界的頭腦,練就一雙用數(shù)學(xué)視角觀察世界的眼睛,開(kāi)啟新的探索——發(fā)現(xiàn)平凡中的不平凡之謎……

勾股定理教學(xué)教學(xué)反思篇7

勾股定理是中學(xué)數(shù)學(xué)幾個(gè)重要定理之一,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,既是直角三角形性質(zhì)的拓展,也是后續(xù)學(xué)習(xí)“解直角三角形”的基礎(chǔ)。它緊密聯(lián)系了數(shù)學(xué)中兩個(gè)最基本的量——數(shù)與形,能夠把形的特征(三角形中一個(gè)角是直角)轉(zhuǎn)化成數(shù)量關(guān)系(三邊之間滿足a2+b2=c2)堪稱數(shù)形結(jié)合的典范,在理論上占有重要地位。

八年級(jí)學(xué)生已具備一定的分析與歸納能力,初步掌握了探索圖形性質(zhì)的基本方法。但是學(xué)生對(duì)用割補(bǔ)方法和面積計(jì)算證明幾何命題的意識(shí)和能力存在障礙,對(duì)于如何將圖形與數(shù)有機(jī)的結(jié)合起來(lái)還很陌生。

基于以上原因,本節(jié)課把學(xué)生的探索活動(dòng)放在首位,一方面要求學(xué)生在教師引導(dǎo)下自主探索,合作交流,另一方面要求學(xué)生對(duì)探究過(guò)程中用到的數(shù)學(xué)思想方法有一定的領(lǐng)悟和認(rèn)識(shí)。從而教給學(xué)生探求知識(shí)的方法,教會(huì)學(xué)生獲取知識(shí)的本領(lǐng)。并確立了如下的教學(xué)目標(biāo):

1、學(xué)生經(jīng)歷從數(shù)到形再由形到數(shù)的轉(zhuǎn)化過(guò)程,經(jīng)歷探求三個(gè)正方形面積間的關(guān)系轉(zhuǎn)化為三邊數(shù)量關(guān)系的過(guò)程。并從過(guò)程中讓學(xué)生體會(huì)數(shù)形結(jié)合思想,發(fā)展將未知轉(zhuǎn)化為已知,由特殊推測(cè)一般的合情推理能力。

2、讓學(xué)生經(jīng)歷圖形分割實(shí)驗(yàn)、計(jì)算面積的過(guò)程,嘗試從不同的角度尋求解決問(wèn)題的方法,并能有效地解決問(wèn)題,積累解決問(wèn)題的經(jīng)驗(yàn),在過(guò)程中養(yǎng)成獨(dú)立思考、合作交流的學(xué)習(xí)習(xí)慣;通過(guò)解決問(wèn)題增強(qiáng)自信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

3、通過(guò)老師的介紹,體會(huì)一種新的證明的方法——面積證法。并在老師的介紹中感受勾股定理的豐富文化內(nèi)涵,激發(fā)生的熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感。

教學(xué)難點(diǎn)將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計(jì)算圖形面積。

本節(jié)課根據(jù)學(xué)生的認(rèn)知結(jié)構(gòu)采用“觀察——猜想——?dú)w納——驗(yàn)證——應(yīng)用”的教學(xué)方法,這一流程體現(xiàn)了知識(shí)發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生體會(huì)到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想。另外,我在探索的過(guò)程中補(bǔ)充了一個(gè)倒水實(shí)驗(yàn),(放片子)我個(gè)人覺(jué)得效果很好,它讓學(xué)生深刻的體會(huì)到了,不是所有三角形三邊都有a2+b2=c2的關(guān)系,只有直角三角形三邊才存在這種關(guān)系,并且實(shí)驗(yàn)很具有直觀性,便于學(xué)生理解,而且是在學(xué)生的學(xué)習(xí)疲勞期出現(xiàn),達(dá)到了再次點(diǎn)燃學(xué)生學(xué)習(xí)熱情的目的,一舉多得。

除了探究出勾股定理的內(nèi)容以外,本節(jié)課還適時(shí)地向?qū)W生展現(xiàn)勾股定理的歷史,特別是通過(guò)介紹我國(guó)古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生愛(ài)國(guó)熱情,培養(yǎng)學(xué)生的民族自豪感和探索創(chuàng)新的精神。練習(xí)反饋中既有勾股定理的基本應(yīng)用,還有貼近學(xué)生生活的實(shí)例,既讓學(xué)生感受到學(xué)習(xí)知識(shí)應(yīng)用于生活的成就感,又使學(xué)生深刻了解勾股定理的廣泛應(yīng)用。讓學(xué)生總結(jié)本堂課的收獲,從內(nèi)容,到數(shù)學(xué)思想方法,到獲取知識(shí)的途徑等方面。給學(xué)生自由的空間,鼓勵(lì)學(xué)生多說(shuō)。這樣引導(dǎo)學(xué)生從多角度對(duì)本節(jié)課歸納總結(jié),感悟點(diǎn)滴,使學(xué)生將知識(shí)系統(tǒng)化,提高學(xué)生素質(zhì),鍛煉學(xué)生的綜合及表達(dá)能力。作業(yè)為了達(dá)到提高鞏固的目的,期望學(xué)生能主動(dòng)地探求對(duì)勾股定理更深入的認(rèn)識(shí)、拓展學(xué)生的視野。