圓柱的體積教學(xué)反思8篇

時間:2022-11-30 作者:tddiction 教學(xué)計劃

只有定期寫教學(xué)反思,我們才可以讓自己的教學(xué)得到進(jìn)步,我們在寫教學(xué)反思之前,一定要積極吸取先進(jìn)的課改成果,范文社小編今天就為您帶來了圓柱的體積教學(xué)反思8篇,相信一定會對你有所幫助。

圓柱的體積教學(xué)反思8篇

圓柱的體積教學(xué)反思篇1

圓柱的體積這部分知識是學(xué)生在有了圓柱、圓和長方體的相關(guān)知識基礎(chǔ)上進(jìn)行教學(xué)的。通過對圓柱體積的具體研究,理解圓柱體的體積公式的推導(dǎo)過程,會計算圓柱的體積;體現(xiàn)數(shù)學(xué)知識“從生活中來到生活中去”的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對科學(xué)知識的求知欲,使學(xué)生樂于探索,善于探究。

一、讓學(xué)生在現(xiàn)實情境中體驗和理解數(shù)學(xué)

?課程標(biāo)準(zhǔn)》指出:要創(chuàng)設(shè)與學(xué)生生活環(huán)境、知識背景密切相關(guān)的、又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、操作、猜測、交流、反思等活動中體會數(shù)學(xué)知識的產(chǎn)生、形成與發(fā)展的過程,獲得積極的'情感體驗,感受數(shù)學(xué)的力量,同時掌握必要的基礎(chǔ)知識與基本技能。在本節(jié)課中,我給學(xué)生創(chuàng)設(shè)了生活情景(裝在杯子中的水的體積你會求嗎?圓柱形橡皮泥的體積你會求嗎?)學(xué)生經(jīng)過思考、討論、交流,找到了解決的方法。而且此環(huán)節(jié)還自然滲透了圓柱體(新問題)和長方體(已知)的知識聯(lián)系。在此基礎(chǔ)上教師又進(jìn)一步從實際需要提出問題:如果要求某些建筑物中圓柱形柱子的體積,或是求壓路機(jī)滾筒的體積,能用剛才同學(xué)們想出來的辦法嗎?這一問題情境的創(chuàng)設(shè),激發(fā)學(xué)生從問題中思考尋求一種更廣泛的方法來解決圓柱體體積的欲望。

二、鼓勵學(xué)生獨立思考,引導(dǎo)學(xué)生自主探索、合作交流

數(shù)學(xué)學(xué)習(xí)過程充滿著觀察、實驗、模擬、推斷等探索性與挑戰(zhàn)性活動,因此,動手實踐、自主探究、合作交流是《課程標(biāo)準(zhǔn)》所倡導(dǎo)的數(shù)學(xué)學(xué)習(xí)的主要方式。在本節(jié)課提示課題后,我先引導(dǎo)學(xué)生獨立思考要解決圓柱的體積問題,可以怎么辦?采用小組討論交流的形式。有了圓面積計算公式推導(dǎo)的經(jīng)驗,經(jīng)過討論得出:把圓柱的底面沿直徑分成若干等份。小組拿出學(xué)具進(jìn)行了動手操作,拼成了一個近似的長方體。同學(xué)們在操作、比較中,圍繞圓柱體和長方體之間的聯(lián)系,抽象出圓柱體的體積公式。讓學(xué)生根據(jù)已有的知識經(jīng)驗創(chuàng)造性地建構(gòu)自己的數(shù)學(xué)。通過實驗、操作、自主探究,實現(xiàn)學(xué)生主體地位、學(xué)習(xí)方式的轉(zhuǎn)變,有效地培養(yǎng)學(xué)生的創(chuàng)新意識。教學(xué)中通過等分、切、拼將圓柱體拼成一個近似的長方體,再運用多媒體顯示由圓柱體到近似的長方體的變換過程,讓學(xué)生觀察、比較近似長方體與圓柱的關(guān)系,使圓柱體體積的計算公式推導(dǎo)過程完全展示在學(xué)生面前。使學(xué)生感悟到轉(zhuǎn)化的思想在幾何學(xué)習(xí)中的妙用。從而產(chǎn)生一種自我嘗試、主動探究、樂于發(fā)現(xiàn)的需要、動機(jī)和能力。

三、建立切拼表象,滲透極限思想

學(xué)生進(jìn)行數(shù)學(xué)探究時,由于條件的限制,沒有更多的學(xué)具提供給學(xué)生,只一個教具。為了讓學(xué)生充分體會,我把操作的機(jī)會給了學(xué)生。接著再結(jié)合多媒體演示讓學(xué)生感受“把圓柱的底面分的份數(shù)越多,切開后,拼起來的圖形就越接近長方體;接著教師指導(dǎo)學(xué)生悟出這個長方體的長相當(dāng)于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。學(xué)生基本沒有親身參與操作,很遺憾。

圓柱的體積教學(xué)反思篇2

教材作為教學(xué)的憑借與依據(jù),只不過是編者對學(xué)科知識、國家要求與學(xué)生進(jìn)行整和思考的結(jié)晶。但由于受時間與地域的影響,我們在執(zhí)行教材時不能把它作為一種“枷鎖”,而應(yīng)作為“跳板”——編者意圖與學(xué)生實際的“跳板”。因此,教學(xué)時,我們要精心研究教材,揣摩編者意圖、考慮學(xué)生實際,創(chuàng)造性地利用教材。

1、挖掘訓(xùn)練空白,及時補(bǔ)白教材。

編者在編寫教材時,也考慮了地域、學(xué)科、時間等因素,留下了諸多空白,我們使用教材時,要深入挖掘其中的訓(xùn)練空白,及時補(bǔ)白教材。中的例題教學(xué),就挖掘出了教材中的訓(xùn)練空白,并沒有把教學(xué)簡單地停留在一種解答方法上,而是在學(xué)生預(yù)習(xí)的基礎(chǔ)上引導(dǎo)學(xué)生深入思考,在解決問題的過程中體會“從不同的角度去考慮問題,將得到不同的結(jié)果”的道理,從而學(xué)會多角度考慮問題,提高解決問題的能力。

2、找出知識聯(lián)系,大膽重組教材。

數(shù)學(xué)知識具有一定的結(jié)構(gòu),知識間存在著密切的聯(lián)系,我們在教學(xué)時不能只著眼于本節(jié)課的教學(xué),而應(yīng)找出知識間的內(nèi)在聯(lián)系,幫助學(xué)生建立一個較為完整知識系統(tǒng)。的表1僅幫助學(xué)生熟練掌握體積公式,此外無更多的教學(xué)價值,而重組后的表2不僅實現(xiàn)了編者的意圖,而且為“比例”的教學(xué)作了提前孕伏。走出了數(shù)學(xué)教學(xué)的“只見樹木,不見森林”的“點教學(xué)”的誤區(qū)。

圓柱的體積教學(xué)反思篇3

在教學(xué)圓柱的體積時,我采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。通過這節(jié)

課的教學(xué),我覺得有以下幾個方面值得探討:

一、聯(lián)系舊知,導(dǎo)入新知。

圓柱的體積的導(dǎo)入,在回憶了長方體、正方體體積計算方法,并強(qiáng)調(diào)長方體、正方體的體積都可以用底面積乘高,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想:“圓柱體是否可以轉(zhuǎn)化成我們學(xué)過的圖形呢?”激發(fā)學(xué)生好奇心,獨立思考問題,探索問題的愿望。這樣聯(lián)系舊知,導(dǎo)入新知,思維過度自然,易接受新知。

二、動手操作,探索新知。

學(xué)生在探究新知時,教師要給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。教學(xué)“圓柱的體積”時,學(xué)生親身參與操作,先用小刀把一塊月餅切成一個圓柱體把圓柱的底面分成若干份(例如,分成12等份),然后把圓柱切開,再拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體。找一找:這個長方體的長相當(dāng)于圓柱的什么,寬是圓柱的什么,高是圓柱的什么。圓柱的體積就是長方體的體積,從而推導(dǎo)出圓柱體積的計算公式。

三、課件展示,加深理解。

為了直觀、形象,讓學(xué)生觀看課件:圓轉(zhuǎn)化成近似長方形的過程,使學(xué)生很容易猜想出圓柱體也可以轉(zhuǎn)化成近似的長方體來得出體積公式。在推導(dǎo)圓柱體積公式的過程中,要求學(xué)生想象:“如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會有什么變化?”學(xué)生雖然能說出“拼成的物體越來越接近長方體?!?但是,到底拼成的圖形怎樣更接近長方體?演示動畫后,學(xué)生不僅對這個切拼過程一目了然,同時又加深理解了圓柱體轉(zhuǎn)化成近似長方體的轉(zhuǎn)化方法。

四、分層練習(xí),發(fā)散思維。

為了培養(yǎng)學(xué)生解題的靈活性,進(jìn)行分層練習(xí),拓展知識,發(fā)散思維。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面直徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積;已知圓柱側(cè)面積和高,怎樣求圓柱體積;已知圓柱底面積和體積,怎樣求高;已知圓柱體積和高,怎樣求底面積等。

但是不成功的地方也有,如學(xué)生在操作時有些學(xué)生拼的不是長方體,而是其他的形狀,這里由于是上公開課的原因就沒有有針對性的講解,只做到了多數(shù)學(xué)生的指導(dǎo)而沒有做到面向全體學(xué)生,這點我覺得在課堂上很難做到。

總之,通過這次的國培學(xué)習(xí),使我的思想認(rèn)識和課堂技能都有了新的認(rèn)識,感謝國培!

教材作為教學(xué)的憑借與依據(jù),只不過是編者對學(xué)科知識、國家要求與學(xué)生進(jìn)行整和思考的結(jié)晶。但由于受時間與地域的影響,我們在執(zhí)行教材時不能把它作為一種“枷鎖”,而應(yīng)作為“跳板”——編者意圖與學(xué)生實際的“跳板”。因此,教學(xué)時,我們要精心研究教材,揣摩編者意圖、考慮學(xué)生實際,創(chuàng)造性地利用教材。

圓柱的體積教學(xué)反思篇4

今天上了《圓柱的體積》一課,覺得比以前上得輕松,回到辦公室細(xì)細(xì)品味上課的過程,頗有幾分感受:

在本課中,當(dāng)學(xué)生面對新的問題情境—“圓柱的體積該怎么求?”時,能從圓的面積公式的推導(dǎo),根據(jù)已有的知識作出 “轉(zhuǎn)化”的判斷。當(dāng)然,由于知識經(jīng)驗的不足,表達(dá)得不是很清晰。但學(xué)生的這些都是有價值的。這些“猜想”閃爍著學(xué)生智慧的火花,折射出學(xué)生的創(chuàng)造精神。在此基礎(chǔ)上,讓學(xué)生以小組合作方式,利用已切開的圓柱體教具進(jìn)行驗證,在討論聲中,學(xué)生獲得了真知。可見,教師要保護(hù)學(xué)生的創(chuàng)造熱情并給以科學(xué)探究方法的引導(dǎo),以發(fā)展學(xué)生的創(chuàng)造性。在這點上,我對學(xué)生的探究精神給予了充分的肯定。這節(jié)課再次讓我知道了,相信學(xué)生的創(chuàng)造力是我們設(shè)計教法的前提。

在引導(dǎo)學(xué)生解決“粉筆的體積”等這個問題時,課堂上有學(xué)生把它當(dāng)作圓柱體積來求,提出:“誤差這么小,是可行的。”而且那位學(xué)生要求的僅是一個大約的數(shù)值,所以用這種方法可以。但這種計算粉筆體積的方法可行嗎?如果我不提出疑義,也不加以說明,就會給學(xué)生造成“圓臺的體積可以用這兩種方法來計算”的錯誤認(rèn)識,對學(xué)生的后續(xù)學(xué)習(xí)會造成一些不利的影響。我就這個問題引導(dǎo)學(xué)生進(jìn)一步探索,使學(xué)生發(fā)現(xiàn)平面圖形中的一些規(guī)律照搬到立體圖形中有時會行不通,懂得知識并非一成不變的,有其發(fā)展性,初步理解三維空間物體與二維平面圖形的聯(lián)系與區(qū)別,為進(jìn)一步學(xué)習(xí)積累經(jīng)驗。學(xué)生在探索過程中,雖不能很快獲得結(jié)論性的知識,但卻嘗試了科學(xué)探究的方法,形成良好的思維品質(zhì),增進(jìn)了情感體驗。這樣,既保護(hù)了學(xué)生的創(chuàng)造性,又保證了教學(xué)內(nèi)容的科學(xué)性,就學(xué)生的發(fā)展而言,誰能說讓學(xué)生經(jīng)歷這樣探究的過程,不也比獲得現(xiàn)成的結(jié)論更富有積極的意義?

圓柱的體積教學(xué)反思篇5

【學(xué)習(xí)目標(biāo)】

1、探索并掌握圓柱的體積計算公式。

2、能運用公式計算圓柱的體積,并解決實際問題。

【學(xué)習(xí)過程】

一、板書課題

師:同學(xué)們,今天我們來學(xué)習(xí)“圓柱的體積”(板書課題)。

二、出示目標(biāo)

本節(jié)課我們的目標(biāo)是:(出示)

1、探索并掌握圓柱的體積計算公式。

2、能運用公式計算圓柱的體積,并解決實際問題。

了達(dá)到目標(biāo),下面請大家認(rèn)真地看書。

三、出示自學(xué)指導(dǎo)

認(rèn)真看課本第19頁到第20頁的例5和例6的內(nèi)容,重點看圓柱體積公式的推導(dǎo)過程和例6解題過程,想:

1、圓柱的體積公式是如何推導(dǎo)出來的?

2、圓柱的體積計算公式是什么?用字母如何表示?

5分鐘后,比誰能做對檢測題!

師:認(rèn)真看書自學(xué),比誰自學(xué)的最認(rèn)真,自學(xué)效果最好。下面自學(xué)競賽開始。

四、先學(xué)

(一)看書

學(xué)生認(rèn)真看書,教師巡視,督促人人都在認(rèn)真地看書。

(二)檢測(找兩名學(xué)生板演,其余生寫在練習(xí)本上)

第20頁“做一做”和第21頁第5題。

要求:1、認(rèn)真觀察,正確書寫,每一步都要寫出來。

2、寫完的同學(xué)認(rèn)真檢查。

五、后教

(一)更正

師:寫完的同學(xué)請舉手。下面,請大家一起看黑板上這些題,發(fā)現(xiàn)問題的同學(xué)請舉手。(由差-中-好)

(二)討論

1、看第1題:認(rèn)為算式列對的請舉手?

?圓柱的體積=底面積×高】

2、看第2題:認(rèn)為算式列對的舉手?你是怎么思考的?

3、看計算過程和結(jié)果,認(rèn)為對的舉手?

4、評正確率、板書,并讓學(xué)生同桌對改。

今天你們表現(xiàn)實在是太好了,老師真為你們感到高興。老師這里有幾道練習(xí)題,敢不敢來試一試?(出示)

六、補(bǔ)充練習(xí):

1、一個圓柱形鋼材,底面積是30立方厘米,高是60厘米,體積是多少立方厘米?

2、一個圓柱體和一個長方形的體積相等,高也相等,那么它們的底面積()。

3、把一個圓柱的側(cè)面展開,得到一個正方形,圓柱的底面半徑是5厘米,這個圓柱的高是()厘米,體積是()立方厘米。.

下面,我們就來運用今天所學(xué)的知識來做作業(yè),比誰的課堂作業(yè)能做得又對又快,字體還又端正。

七、當(dāng)堂訓(xùn)練(課本練習(xí)三,第21頁)

作業(yè):第3、4、7、8題寫作業(yè)本上

練習(xí):第1題寫書上,第2、6、9、10題寫練習(xí)本上

八、板書設(shè)計

課題三:圓柱的體積

圓柱的體積=底面積×高

課后反思:

本節(jié)課的教學(xué)內(nèi)容是九年義務(wù)教育六年級下冊的《圓柱的體積》,我教此內(nèi)容時,不按傳統(tǒng)的教學(xué)方法,而是采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。對此,我作如下反思:

一、學(xué)生學(xué)到了有價值的知識。

學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是、學(xué)生在自己艱苦的學(xué)習(xí)中發(fā)現(xiàn)并從學(xué)生的口里說出來的這樣的知識具有個人意義,理解更深刻。

二、培養(yǎng)了學(xué)生的科學(xué)精神和方法。

新課程改革明確提出要“強(qiáng)調(diào)讓學(xué)生通過實踐增強(qiáng)探究和創(chuàng)新意識,學(xué)習(xí)科學(xué)研究的方法,培養(yǎng)科學(xué)態(tài)度和科學(xué)精神”。學(xué)生動手實踐、觀察得出結(jié)論的過程,就是科學(xué)研究的過程。

三、促進(jìn)了學(xué)生的思維發(fā)展。

傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當(dāng)成知識的“容器”。學(xué)生的學(xué)習(xí)只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而這里創(chuàng)設(shè)了豐富的教學(xué)情景,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進(jìn)了學(xué)生的思維發(fā)展。

本節(jié)課采用新的教學(xué)方法,取得了較好的教學(xué)效果,不足之處是:由于學(xué)生自由討論、實踐和思考的時間較多,練習(xí)的時間較少。

圓柱的體積教學(xué)反思篇6

?圓柱的體積》是在學(xué)生已經(jīng)學(xué)會計算長方體、正方體的體積,并且掌握圓柱基本特征的基礎(chǔ)上,引導(dǎo)學(xué)生探索并掌握圓柱的體積公式。通過教材教學(xué)學(xué)習(xí)后,下面我從教學(xué)過程、教學(xué)策略、教學(xué)技能等方面談?wù)勛约旱囊恍┓此肌?/p>

一、在教學(xué)過程的設(shè)計方面

1、導(dǎo)入時,力求突破教材,有所創(chuàng)新

圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學(xué)生們猜一猜。猜想計算方法固然有好處,但要讓學(xué)生馬上做實驗理解圓柱體積計算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強(qiáng),不利于學(xué)生理解和掌握實驗的用意,課堂效果就會明顯不佳。于是我設(shè)計時不妨在回憶了長方體、正方體體積計算方法之后,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時教師的引導(dǎo)才是行之有效的。不過應(yīng)該注意時間的控制,不能花費太多的時間。

2、新課時,要實現(xiàn)人人參與,主動學(xué)習(xí)

學(xué)生進(jìn)行數(shù)學(xué)探究時,應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。在推導(dǎo)圓柱體積公式過程時,我讓學(xué)生經(jīng)歷先想—觀察—動手操作的過程。把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著讓學(xué)生小組交流長方體的長和寬與圓柱的各部分有什么關(guān)系?圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。這樣學(xué)生親身參與操作,有了空間感覺的體驗,,也有了充分的思考空間。這樣設(shè)計我覺得能突破難點,課堂效果很好。

3、練習(xí)時,形式多樣,層層遞進(jìn)

例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計算圓柱的體積,我在設(shè)計練習(xí)時動了一番腦,花心思去考慮怎樣才能讓學(xué)生用最短的時間完成不同類型的題目。通過反思,我概括出五種類型: a。已知圓柱底面積(s)和高(h),計算圓柱體積可以應(yīng)用這一公式:v=sh。

b。已知圓柱底面半徑(r)和高(h),計算圓柱體積可以應(yīng)用這一公式:v=πr2h。

c。已知圓柱底面直徑(d)和高(h),計算圓柱體積可以應(yīng)用這一公式:v=π(d/2)2h。

d。已知圓柱底面周長(c)和高(h),計算圓柱體積可以應(yīng)用這一公式:v=π(c÷π÷2)2h。

e。已知圓柱側(cè)面積(s側(cè))和高(h),計算圓柱體積可以應(yīng)用這一公式:v=π(s側(cè)÷h÷π÷2)2h。

因為是第一課時所以在鞏固練習(xí)中,只要從前四種類型去考慮,做到面面俱到,逐層深入,由易到難,使學(xué)生真正掌握好計算圓柱體積的方法另外,還設(shè)計了解決生活中的問題,讓學(xué)生能學(xué)以致用解決生活中的問題。

二、在教學(xué)策略方面

我采用多媒體的直觀教具相結(jié)合的手段,在圓柱體積公式推導(dǎo)過程中指導(dǎo)學(xué)生充分利用手中的學(xué)具、教具,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流、總結(jié)歸納等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進(jìn)了學(xué)生的思維發(fā)展。而在鞏固練習(xí)這一環(huán)節(jié),我用多媒體發(fā)揮它大容量、節(jié)省時間的優(yōu)點。

三、在教學(xué)技能方面

學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是學(xué)生在自己艱苦的學(xué)習(xí)過程中發(fā)現(xiàn)并從學(xué)生的口里說出來的,這樣的知識具有個人意義,理解更深刻。但是我覺得這個引導(dǎo)的過程需要教師有認(rèn)真準(zhǔn)備,隨時能解決課堂上可能出現(xiàn)的一些問題。傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當(dāng)成知識的“容器”。學(xué)生的學(xué)習(xí)只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而我在本課創(chuàng)設(shè)了豐富的教學(xué)情景。

四、教學(xué)要達(dá)到三個目的

一是認(rèn)識等底等高的含義,便于判斷圓柱可以轉(zhuǎn)化成與它等底等高的長方體。

二是從長方體與正方體等底等高,體積也相等的事實,引發(fā)等底等高的圓柱與長方體的體積也相等的猜想,形成把圓柱轉(zhuǎn)化成長方體的活動心向。

三是復(fù)習(xí)長方體、正方體的體積公式,圓柱的體積最終也要這樣計算。

圓柱的體積教學(xué)反思篇7

一、導(dǎo)入時,要突破教材,有所創(chuàng)新圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學(xué)生們猜一猜。猜想計算方法固然有好處,但要讓學(xué)生馬上做實驗理解圓柱體積計算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強(qiáng),不利于學(xué)生理解和掌握實驗的用意,課堂效果就會明顯不佳。我認(rèn)為,不妨在回憶了長方體、正方體體積計算方法之后,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時教師的引導(dǎo)才是行之有效的。

二、新課時,要實現(xiàn)人人參與,主動學(xué)習(xí)學(xué)生進(jìn)行數(shù)學(xué)探究時,教師應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。教學(xué)“圓柱的體積”時,由于學(xué)校教學(xué)條件差,沒有更多的學(xué)具提供給學(xué)生,只是由教師示范演示推導(dǎo)過程:把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著教師指導(dǎo)學(xué)生悟出這個長方體的長相當(dāng)于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。學(xué)生沒有親身參與操作,就缺乏情感空間感覺的體驗,而且這部分又是小學(xué)階段立體圖形的教學(xué)難點,學(xué)生得不到充分的思考空間,也不利于教師營造思考的環(huán)境,不便于學(xué)生思考如何利用已知圖形體積和教學(xué)思想去解決這一問題。學(xué)生缺乏行為、認(rèn)知的投入和積極的情感投入,所以,課堂效果差就可想而知了。

三、練習(xí)時,要形式多樣,層層遞進(jìn)

例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計算圓柱的體積,教師在設(shè)計練習(xí)時要多動腦,花心思去考慮怎樣才能讓學(xué)生用最短的時間完成不同類型的題目。

圓柱的體積教學(xué)反思篇8

一、讓操作更詳實,留下思考的痕跡

?數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:動手實踐、自主探索、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。組織學(xué)生在實踐操作中探究發(fā)現(xiàn)規(guī)律,可以充分調(diào)動學(xué)生的各種感官,從感性到理性,從實踐到認(rèn)識,從具體到抽象,引導(dǎo)學(xué)生積極動手動腦、概括分析、抽象推理等,這不僅有利于學(xué)生思維的發(fā)展,而且也可以加深學(xué)生對數(shù)學(xué)知識的理解和掌握。尤其是對于幾何知識的學(xué)習(xí),課堂教學(xué)中的動手操作就顯得更加重要。

在探索圓柱體積計算方法的時候,教師試圖讓學(xué)生結(jié)合圓面積計算的探索方法,能聯(lián)想到可以把,圓柱的體積轉(zhuǎn)化成已知的立體圖形的體積。但這種方法似乎在學(xué)生的印象中并不深刻,因此學(xué)生在探索的一開始,學(xué)生就遇到了思考的困惑,對他后面的探索造成了很大的影響。在教師的印象中圓面積的計算公式推導(dǎo)應(yīng)該是我們花了很多時間去讓學(xué)生操作的,但是操作的效果卻如此之差。我們不妨反問自己一下,究竟自己在教學(xué)的時候是否用好了學(xué)生的操作,讓學(xué)生對操作的過程有深刻的體會與認(rèn)識,在操作中是否激起了學(xué)生的思考。

當(dāng)學(xué)生想到了探索方法后,卻因為一些客觀的原因,沒有能夠讓學(xué)生親自去套作一番,光是看課件、看其他同學(xué)的操作,對于大部分學(xué)生來說,印象是不夠深刻的,體會也是不到位的。畢竟這部分內(nèi)容的學(xué)習(xí)對與學(xué)生來說也是有一定困難的,雖然是六年級的同學(xué),但他們的空間想象能力還是不夠的,需要實打?qū)嵉牟僮?,讓他們有個直觀的認(rèn)識。

所以我認(rèn)為我們的課堂上應(yīng)放手讓學(xué)生去操作,用直觀的操作,留下自己思考的痕跡,為進(jìn)一步探索知識做好準(zhǔn)備。

二、讓觀察更細(xì)致,尋找知識的聯(lián)系

數(shù)學(xué)觀察力,是新課標(biāo)中對提出學(xué)生應(yīng)必備的一種重要數(shù)學(xué)能力。學(xué)生在操作的基礎(chǔ)上要學(xué)會觀察,挖掘知識之間的聯(lián)系,真正體現(xiàn)操作的價值。

在圓柱的體積的教學(xué)中,教師讓學(xué)生去發(fā)現(xiàn)圓柱體與通過切割后形成的長方體之間的聯(lián)系時,不少學(xué)生都一時摸不著頭腦。這時,教師不妨給孩子一些觀察的提示,如:“拼成的長方體的底面積與原來圓柱的底面積有什么關(guān)系?為什么是相等的?”“拼成的長方體的高與原來圓柱的高有什么關(guān)系?為什么是相等的?”通過學(xué)生直觀的觀察,讓學(xué)生去挖掘數(shù)學(xué)本質(zhì)上的一些聯(lián)系,讓學(xué)生在知識的探索過程中有一個完成的體驗過程,也對所學(xué)的知識有一個更好的理解。

觀察是智慧的源泉,讓學(xué)生學(xué)會從變化的角度去觀察,發(fā)現(xiàn)知識之間的聯(lián)系,這也是一種令學(xué)生終身受益的學(xué)習(xí)方法。

三、讓探索更深入,渴求方法的掌握

通過操作與觀察,可以說學(xué)生積累了一定的認(rèn)知經(jīng)驗,這種經(jīng)驗我想不應(yīng)該只停留在一節(jié)課、一個內(nèi)容的學(xué)習(xí)中,可以延伸到很多知識的學(xué)習(xí)中去,從而形成一定的學(xué)習(xí)方法。就如在圓柱的體積的學(xué)習(xí)中,圓柱體轉(zhuǎn)化成已經(jīng)學(xué)過的長方體的體積來探究的這種方法在之前學(xué)生已經(jīng)接觸過,如:圓面積的計算方法、平行四邊形的面積計算方法,我們都是通過將未知的圖形轉(zhuǎn)化成已知圖形來探索面積計算的方法。如果我們在教學(xué)的過程中能夠很好地重視學(xué)生的操作經(jīng)驗積累,并形成一定的方法,相信學(xué)生在溝通新知和舊知之間的聯(lián)系時會更加的自然而然,也能順利的實現(xiàn)知識的正遷移。

因此,在數(shù)學(xué)學(xué)習(xí)的過程中,應(yīng)該讓學(xué)生的探索過程更加的深入,形成一定的學(xué)習(xí)方法,為今后的學(xué)習(xí)積累知識經(jīng)驗的同時