成反比例的量教案5篇

時(shí)間:2022-11-15 作者:Youaremine 備課教案

教案在完成的過程中,大家需要注意創(chuàng)新教學(xué)方法,認(rèn)真寫好一份教案是能夠提高我們?cè)诮虒W(xué)中的質(zhì)量的,以下是范文社小編精心為您推薦的成反比例的量教案5篇,供大家參考。

成反比例的量教案5篇

成反比例的量教案篇1

教學(xué)內(nèi)容:教材第99~102頁(yè)例1~例3。

教學(xué)要求:

1.使學(xué)生認(rèn)識(shí)反比例關(guān)系的意義,理解、掌握成反比例量的變化規(guī)律及其特征,能依據(jù)反比例的意義判斷兩種量成不成反比例關(guān)系。

2.進(jìn)一步培養(yǎng)學(xué)生觀察、分析、綜合和概括等能力,讓學(xué)生掌握判斷兩種相關(guān)聯(lián)的量成不成反比例的方法,培養(yǎng)學(xué)生判斷、推理的能力。

教學(xué)重點(diǎn):認(rèn)識(shí)反比例關(guān)系的意義。

教學(xué)難點(diǎn):掌握成反比例量的變化規(guī)律及其特征。

教學(xué)過程:

一、鋪墊孕伏:

1.正比例關(guān)

系的意義是什么?怎樣用字母表示這種關(guān)系?

判斷兩種相關(guān)聯(lián)量成不成正比例的關(guān)鍵是什么?

2.下面哪兩種量成正比例關(guān)系?為什么?

(1)時(shí)間一定,行駛的速度和路程。

(2)數(shù)量一定,單價(jià)和總價(jià)。

3.說一說工作效率、工作時(shí)間和工作總量之間的數(shù)量關(guān)系。(學(xué)生回答后老師板書)在什么條件下,其中兩種量成正比例?

4.引入新課。

如果工作總量一定,工作效率和工作時(shí)間之間會(huì)怎樣變化呢,變化又有什么規(guī)律呢?這兩種量又成什么關(guān)系呢?這就是今天要學(xué)習(xí)的反比例關(guān)系。(板書課題)

二、自主探究:

1.教學(xué)例2。

出示例2某運(yùn)輸公司要運(yùn)一批300噸的貨物。讓學(xué)生計(jì)算并完成填表任務(wù)。

每天運(yùn)的數(shù)量(噸)1020304050

所需的天數(shù)

在本上填表,并觀察思考能發(fā)現(xiàn)什么?指名口答,老師板書填表。讓學(xué)生按學(xué)習(xí)正比例的方法觀察表里內(nèi)容,相互之間討論,發(fā)現(xiàn)了什么。

指名學(xué)生口答討論的結(jié)果,得出:

(1)每天運(yùn)的噸數(shù)和需要的天數(shù)是兩種相關(guān)聯(lián)的量,(板書:兩種相關(guān)聯(lián)的量)需要的天數(shù)隨著每天運(yùn)的噸數(shù)的變化而變化。

(2)每天運(yùn)的噸數(shù)縮小,需要的天數(shù)反而擴(kuò)大,每天運(yùn)的噸數(shù)擴(kuò)大,需要的天數(shù)反而縮小。

(3)可以看出它們的變化規(guī)律是:每天運(yùn)的噸數(shù)和天數(shù)的積總是一定的。(板書:每天運(yùn)的噸數(shù)和天數(shù)的積一定)因?yàn)槊刻爝\(yùn)的噸數(shù)和天數(shù)的積都是240。提問:這里的240是什么數(shù)量?誰(shuí)能說出這里的數(shù)量關(guān)系式?想一想,這個(gè)式子表示的是什么意思?(把上面的板書補(bǔ)充成:運(yùn)的總噸數(shù)一定時(shí),每天運(yùn)的噸數(shù)和天數(shù)的積一定)

2.教學(xué)例1

出示例1。

請(qǐng)同學(xué)們按照剛才學(xué)習(xí)例4的方法,自己學(xué)習(xí)例1,仔細(xì)想想你發(fā)現(xiàn)了些什么?學(xué)生觀察思考后,小組討論:長(zhǎng)方形的面積比變,當(dāng)長(zhǎng)發(fā)生變化時(shí),長(zhǎng)方形的寬發(fā)生變化嗎?變化的規(guī)律是怎樣的?

3.概括反比例的意義。

(1)綜合例1、例2的共同點(diǎn)。

提問:請(qǐng)你比較一下例1和例2,說一說,這兩個(gè)例題有什么共同的地方?

(2)概括反比例意義。

例1、例2里兩種相關(guān)聯(lián)的量,它們是什么關(guān)系的量呢?請(qǐng)同學(xué)們看第101頁(yè)1~3自然段。說明:像例1、例2里這樣兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變,變化時(shí)兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的積一定。這樣兩種相關(guān)聯(lián)的量就叫做成反比例的量,它們之間的關(guān)系叫做反比例關(guān)系。迫問:兩種相關(guān)聯(lián)的量成不成反比例的關(guān)鍵是什么?(乘積是不是一定)提問:如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的乘積,那么上面這種關(guān)系式可以怎樣寫呢?(板書:xy=k(一定))指出:這個(gè)式子表示兩種相關(guān)聯(lián)的量x和y,y隨著x的變化而變化,它們的乘積k是一定的。這時(shí)就說x和y成反比例關(guān)系。所以,兩種量成反比例關(guān)系,我們就用xy=k(一定)來(lái)表示。

4.具體認(rèn)識(shí)。

(1)提問:例1里有哪兩種相關(guān)聯(lián)的量?這兩種量成反比例關(guān)系嗎?為什么,例2里的兩種量成反比例關(guān)系嗎?為什么?

(2)提問:看兩種相關(guān)聯(lián)的量成不成反比例,關(guān)鍵要看什么?

(3)判斷。

現(xiàn)在回過來(lái)看開始寫的關(guān)系式:工作效率工作時(shí)間=工作總量,當(dāng)工作總量一定時(shí),工作效率和工作時(shí)間成什么關(guān)系?為什么?指出:根據(jù)上面所說的反比例的意義,要知道兩個(gè)量成不成反比例關(guān)系,只要先看這兩種量是不是相關(guān)聯(lián)的量,再看兩種量變化時(shí)乘積是不是一定。如果兩種相關(guān)聯(lián)的量變化時(shí)乘積一定,它們就是成反比例的量,相互之間的關(guān)系就是反比例關(guān)系。

5.教學(xué)例3。

出示例3,看書自學(xué),小組討論,集體交流。追問:判斷兩種量成不成反比例要怎樣想?其中關(guān)鍵是看什么?

三、鞏固練習(xí)

用剛才我們說的判斷方法來(lái)做幾道題。

1.做練一練。

指名學(xué)生口答,說明理由。(可以寫出數(shù)量關(guān)系式看一看)

2.下題兩種相關(guān)聯(lián)量成不成反比例?為什么?

一根鐵絲,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。

3.做練習(xí)十二第1題。

四、課堂小結(jié)

這節(jié)課學(xué)習(xí)的是什么內(nèi)容?反比例關(guān)系的意義是什么?用怎樣的式子表示x和y這兩種相關(guān)聯(lián)的量成反比例?判斷兩種量是不是成反比例,關(guān)鍵是什么?

五、課堂作業(yè)

練習(xí)十二第2~4題。

成反比例的量教案篇2

從容說課

我們學(xué)習(xí)知識(shí)的目的就是為了應(yīng)用,如能把書本上學(xué)到的知識(shí)運(yùn)用到實(shí)際生活中,這就說明確實(shí)把知識(shí)學(xué)好了,會(huì)用了

用函數(shù)觀點(diǎn)處理實(shí)際問題的關(guān)鍵在于分析實(shí)際情境、建立函數(shù)模型,并進(jìn)一步提出明確的數(shù)學(xué)問題,教學(xué)時(shí)應(yīng)注意分析的過程,即將實(shí)際問題置于已有知識(shí)背景之中,用數(shù)學(xué)知識(shí)重新解釋這是什么?可以看成什么?讓學(xué)生逐步學(xué)會(huì)用數(shù)學(xué)的眼光考查實(shí)際問題。同時(shí),在解決問題的過程中,要充分利用函數(shù)的圖象,滲透數(shù)形結(jié)合的思想

此外,解決實(shí)際問題時(shí)。還要引導(dǎo)學(xué)生體會(huì)知識(shí)之間的聯(lián)系以及知識(shí)的綜合運(yùn)用

教學(xué)目標(biāo)

(一)教學(xué)知識(shí)點(diǎn)

1、經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題的過程

2、體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí)。提高運(yùn)用代數(shù)方法解決問題的能力

(二)能力訓(xùn)練要求

通過對(duì)反比例函數(shù)的應(yīng)用,培養(yǎng)學(xué)生解決問題的能力

(三)情感與價(jià)值觀要求

經(jīng)歷將一些實(shí)際問題抽象為數(shù)學(xué)問題的過程,初步學(xué)會(huì)從數(shù)學(xué)的角度提出問題。理解問題,并能綜合運(yùn)用所學(xué)的知識(shí)和技能解決問題。發(fā)展應(yīng)用意識(shí),初步認(rèn)識(shí)數(shù)學(xué)與人類生活的密切聯(lián)系及對(duì)人類歷史發(fā)展的作用

教學(xué)重點(diǎn)

用反比例函數(shù)的知識(shí)解決實(shí)際問題

教學(xué)難點(diǎn)

如何從實(shí)際問題中抽象出數(shù)學(xué)問題、建立數(shù)學(xué)模型,用數(shù)學(xué)知識(shí)去解決實(shí)際問題

教學(xué)方法

教師引導(dǎo)學(xué)生探索法

教學(xué)過程

Ⅰ。創(chuàng)設(shè)問題情境,引入新課

[師]有關(guān)反比例函數(shù)的表達(dá)式,圖象的特征我們都研究過了,那么,我們學(xué)習(xí)它們的目的是什么呢?

[生]是為了應(yīng)用

[師]很好;學(xué)習(xí)的目的是為了用學(xué)到的知識(shí)解決實(shí)際問題。究竟反比例函數(shù)能解決一些什么問題呢?本節(jié)課我們就來(lái)學(xué)一學(xué)

Ⅱ。 新課講解

某??萍夹〗M進(jìn)行野外考察,途中遇到片十幾米寬的爛泥濕地。為了安全、迅速通過這片濕地,他們沿著前進(jìn)路線鋪墊了若干塊木板,構(gòu)筑成一條臨時(shí)通道,從而順利完成了任務(wù);你能解釋他們這樣做的道理嗎?當(dāng)人和木板對(duì)濕地的壓力一定時(shí)隨著木板面積s(m2)的變化,人和木板對(duì)地面的壓強(qiáng)p(pa)將如何變化?如果人和木板對(duì)濕地地面的壓力合計(jì)600 n,那么

(1)用含s的代數(shù)式表示p,p是s的反比例函數(shù)嗎?為什么?

(2)當(dāng)木板畫積為 0.2 m2時(shí)。壓強(qiáng)是多少?

(3)如果要求壓強(qiáng)不超過6000 pa,木板面積至少要多大?

(4)在直角坐標(biāo)系中,作出相應(yīng)的函數(shù)圖象

(5)清利用圖象對(duì)(2)和(3)作出直觀解釋,并與同伴進(jìn)行交流

[師]分析:首先要根據(jù)題意分析實(shí)際問題中的兩個(gè)變量,然后看這兩個(gè)變量之間存在的關(guān)系,從而去分析它們之間的關(guān)系是否為反比例函數(shù)關(guān)系,若是則可用反比例函數(shù)的有關(guān)知識(shí)去解決問題

請(qǐng)大家互相交流后回答

[生](1)由p=得p=

p是s的反比例函數(shù),因?yàn)榻o定一個(gè)s的值。對(duì)應(yīng)的就有唯一的一個(gè)p值和它對(duì)應(yīng),根據(jù)函數(shù)定義,則p是s的反比例函數(shù)

(2)當(dāng)s= 0.2 m2時(shí), p==3000(pa)

當(dāng)木板面積為 0.2m2時(shí),壓強(qiáng)是3000pa.

(3)當(dāng)p=6000 pa時(shí),

s==0.1(m2)

如果要求壓強(qiáng)不超過6000 pa,木板面積至少要 0.1 m2

(4)圖象如下:

(5)(2)是已知圖象上某點(diǎn)的橫坐標(biāo)為0.2,求該點(diǎn)的縱坐標(biāo);(3)是已知圖象上點(diǎn)的縱坐標(biāo)不大于6000,求這些點(diǎn)所處的位置及它們橫坐標(biāo)的取值范圍

[師]這位同學(xué)回答的很好,下面我要提一個(gè)問題,大家知道反比例函數(shù)的圖象是兩支雙曲線、它們要么位于第一、三象限,要么位于第二、四象限,從(1)中已知p=>0,所以圖象應(yīng)位于第一、三象限,為什么這位同學(xué)只畫出了一支曲線,是不是另一支曲線丟掉了呢?還是因?yàn)轭}中只給出了第一象限呢?

[生]第三象限的曲線不存在,因?yàn)檫@是實(shí)際問題,s不可能取負(fù)數(shù),所以第三象限的曲線不存在

[師]很好,那么在(1)中是不是應(yīng)該有條件限制呢?

[生]是,應(yīng)為p= (s>0)。

做一做

1、蓄電池的電壓為定值,使用此電源時(shí),電流i(a)與電阻r(Ω)之間的函數(shù)關(guān)系如下圖;

(1)蓄電池的電壓是多少?你能寫出這一函數(shù)的表達(dá)式嗎?

(2)完成下表,并回答問題:如果以此蓄電池為電源的用電器限制電流不得超過 10a,那么用電器的可變電阻應(yīng)控制在什么范圍內(nèi)?

[師]從圖形上來(lái)看,i和r之間可能是反比例函數(shù)關(guān)系。電壓u就相當(dāng)于反比例函數(shù)中的k.要寫出函數(shù)的表達(dá)式,實(shí)際上就是確定k(u),只需要一個(gè)條件即可,而圖中已給出了一個(gè)點(diǎn)的坐標(biāo),所以這個(gè)問題就解決了,填表實(shí)際上是已知自變量求函數(shù)值。

[生]解:(1)由題意設(shè)函數(shù)表達(dá)式為i=

∵a(9,4)在圖象上,

∴u=ir=36

∴表達(dá)式為i=

蓄電池的電壓是36伏

(2)表格中從左到右依次是:12,9,7.2,6,4.5,3.6

電源不超過 10 a,即i最大為 10 a,代入關(guān)系式中得r=3.6,為最小電阻,所以用電器的可變電阻應(yīng)控制在r≥3.6這個(gè)范圍內(nèi)

2、如下圖,正比例函數(shù)y=k1x的圖象與反比例函數(shù)y=的圖象相交于a,b兩點(diǎn),其中點(diǎn)a的坐標(biāo)為(,2)

(1)分別寫出這兩個(gè)函數(shù)的表達(dá)式:

(2)你能求出點(diǎn)b的坐標(biāo)嗎?你是怎樣求的?與同伴進(jìn)行交流

[師]要求這兩個(gè)函數(shù)的表達(dá)式,只要把a(bǔ)點(diǎn)的坐標(biāo)代入即可求出k1,k2,求點(diǎn)b的

坐標(biāo)即求y=k1x與y=的交點(diǎn)

[生]解:(1)∵a(,2)既在y=k1x圖象上,又在y=的圖象上

∴k1=2,2=

∴k1=2,k2=6

∴表達(dá)式分別為y=2x,y=

∴x2=3

∴x=±

當(dāng)x= ?時(shí),y= ?2

∴b(?,?2)

Ⅲ。課堂練習(xí)

1、某蓄水池的排水管每時(shí)排水 8 m3,6 h可將滿池水全部排空

(1)蓄水池的容積是多少?

(2)如果增加排水管,使每時(shí)的排水量達(dá)到q(m3),那么將滿池水排空所需的時(shí)間t(h)將如何變化?

(3)寫出t與q之間的關(guān)系式;

(4)如果準(zhǔn)備在5 h內(nèi)將滿池水排空,那么每時(shí)的排水量至少為多少?

(5)已知排水管的最大排水量為每時(shí) 12m3,那么最少多長(zhǎng)時(shí)間可將滿池水全部排空?

解:(1)8×6=48(m3)

所以蓄水池的容積是 48 m3

(2)因?yàn)樵黾优潘?,使每時(shí)的排水量達(dá)到q(m3),所以將滿池水排空所需的時(shí)間t(h)將減少。

(3)t與q之間的關(guān)系式為t=

(4)如果準(zhǔn)備在5 h內(nèi)將滿池水排空,那么每時(shí)的排水量至少為=9.6(m3)

(5)已知排水管的最大排水量為每時(shí) 12m3,那么最少要=4小時(shí)可將滿池水全部排空。

Ⅳ、課時(shí)小結(jié)

節(jié)課我們學(xué)習(xí)了反比例函數(shù)的應(yīng)用。具體步驟是:認(rèn)真分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而用反比例函數(shù)的有關(guān)知識(shí)解決實(shí)際問題。

Ⅴ課后作業(yè)

習(xí)題5.4.

板書設(shè)計(jì)

§ 5.3反比例函數(shù)的應(yīng)用

一、1.例題講解

2、做一做

二、課堂練習(xí)

三、課時(shí)小節(jié)

四、課后作業(yè)(習(xí)題5.4)

成反比例的量教案篇3

教學(xué)目標(biāo)

1.使學(xué)生理解正、反比例的意義,能夠初步判斷兩種相關(guān)聯(lián)的量是否成比例,成什么比例.

2.通過觀察、比較、歸納,提高學(xué)生綜合概括推理的能力.

3.滲透辯證唯物主義的觀點(diǎn),進(jìn)行運(yùn)用變化觀點(diǎn)的啟蒙教育.

教學(xué)重難點(diǎn)

理解正反比例的意義,掌握正反比例的變化的規(guī)律.

教學(xué)過程

一、導(dǎo)入新課

(一)昨天老師買了一些蘋果,吃了一部分,你能想到什么?

(二)教師提問

1.你為什么馬上能想到還剩多少呢?

2.是不是因?yàn)槌粤说暮褪O碌氖莾煞N相關(guān)聯(lián)的量?

教師板書:兩種相關(guān)聯(lián)的量

(三)教師談話

在實(shí)際生活中兩種相關(guān)的量是很多的,例如總價(jià)和單價(jià)是兩種相關(guān)聯(lián)的量,總價(jià)和

數(shù)量也是兩種相關(guān)聯(lián)的量.你還能舉出一些例子嗎?

二、新授教學(xué)

(一)成正比例的量

例1.一列火車行駛的時(shí)間和所行的路程如下表:

時(shí)間(時(shí)):路程(千米)

1 :90

2 :180

3 :270

4 :360

5 :450

6 :540

7 :630

8 :720

1.寫出路程和時(shí)間的比并計(jì)算比值.

(1) 2表示什么?180呢?比值呢?

(2) 這個(gè)比值表示什么意義?

(3) 360比5可以嗎?為什么?

2.思考

(1)180千米對(duì)應(yīng)的時(shí)間是多少?4小時(shí)對(duì)應(yīng)的路程又是多少?

(2)在這一組題中上邊的一列數(shù)表示什么?下邊一列數(shù)表示什么?所求出的比值呢?

教師板書:時(shí)間、路程、速度

(3)速度是怎樣得到的?

教師板書:

(4)路程比時(shí)間得到了速度,速度也就是比值,比值相當(dāng)于除法中的什么?

(5)在這組題中誰(shuí)與誰(shuí)是兩種相關(guān)聯(lián)的量?它們是如何相關(guān)聯(lián)的?舉例說明變化規(guī)律.

3.小結(jié):有什么規(guī)律?

成反比例的量教案篇4

三維目標(biāo)

一、知識(shí)與技能

1.能靈活列反比例函數(shù)表達(dá)式解決一些實(shí)際問題.

2.能綜合利用物理杠桿知識(shí)、反比例函數(shù)的知識(shí)解決一些實(shí)際問題.

二、過程與方法

1.經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題.

2. 體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí),提高運(yùn)用代數(shù)方法解決問題的能力.

三、情感態(tài)度與價(jià)值觀

1.積極參與交流,并積極發(fā)表意見.

2.體驗(yàn)反比例函數(shù)是有效地描述物理世界的重要手段,認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問題和進(jìn)行交流的重要工具.

教學(xué)重點(diǎn)

掌握從物理問題中建構(gòu)反比例函數(shù)模型.

教學(xué)難點(diǎn)

從實(shí)際問題中尋找變量之間的關(guān)系,關(guān)鍵是充分運(yùn)用所學(xué)知識(shí)分析物理問題,建立函數(shù)模型,教學(xué)時(shí)注意分析過程,滲透數(shù)形結(jié)合的思想.

教具準(zhǔn)備

多媒體課件.

教學(xué)過程

一、創(chuàng)設(shè)問題情境,引入新課

活動(dòng)1

問 屬:在物理學(xué)中,有很多量之間的變化是反比例函數(shù)的關(guān)系,因此,我們可以借助于反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,這也稱為跨學(xué)科應(yīng)用.下面的例子就是其中之一.

在某一電路中,保持電壓不變,電流i(安培)和電阻r(歐姆)成反比例,當(dāng)電阻r=5歐姆時(shí),電流i=2安培.

(1)求i與r之間的函數(shù)關(guān)系式;

(2)當(dāng)電流i=0.5時(shí),求電阻r的值.

設(shè)計(jì)意圖:

運(yùn)用反比例函數(shù)解決物理學(xué)中的一些相關(guān)問題,提高各學(xué)科相互之間的綜合應(yīng)用能力.

師生行為:

可由學(xué)生獨(dú)立思考,領(lǐng)會(huì)反比例函數(shù)在物理學(xué)中的綜合應(yīng)用.

教師應(yīng)給“學(xué)困生”一點(diǎn)物理學(xué)知識(shí)的引導(dǎo).

師:從題目中提供的信息看變量i與r之間的反比例函數(shù)關(guān)系,可設(shè)出其表達(dá)式,再由已知條件(i與r的一對(duì)對(duì)應(yīng)值)得到字母系數(shù)k的值.

生:(1)解:設(shè)i=kr ∵r=5,i=2,于是

2=k5 ,所以k=10,∴i=10r .

(2) 當(dāng)i=0.5時(shí),r=10i=100.5 =20(歐姆).

師:很好!“給我一個(gè)支點(diǎn),我可以把地球撬動(dòng).”這是哪一位科學(xué)家的名言?這里蘊(yùn)涵著什么 樣的原理呢?

生:這是古希臘科學(xué)家阿基米德的名言.

師:是的.公元前3世紀(jì),古希臘科學(xué)家阿基米德發(fā)現(xiàn)了著名的“杠桿定律”: 若兩物體與支點(diǎn)的距離反比于其重量,則杠桿平衡,通俗一點(diǎn)可以描述為;

阻力×阻力臂=動(dòng)力×動(dòng)力臂(如下圖)

下面我們就來(lái)看一例子.

二、講授新課

活動(dòng)2

小偉欲用撬棍橇動(dòng)一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米.

(1)動(dòng)力f與動(dòng)力臂l有怎樣的函數(shù)關(guān)系?當(dāng)動(dòng)力臂為1.5米時(shí),撬動(dòng)石頭至少需要多大的力?

(2)若想使動(dòng)力f不超過題(1)中所用力的一半,則動(dòng)力臂至少要加長(zhǎng)多少?

設(shè)計(jì)意圖:

物理學(xué)中的很多量之間的變化是反比例函數(shù)關(guān)系.因此,在這兒又一次借助反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,即跨學(xué)科綜合應(yīng)用.

師生行為:

先由學(xué)生根據(jù)“杠桿定律”解決上述問題.

教師可引導(dǎo)學(xué)生揭示“杠桿乎衡”與“反比例函數(shù)”之間的關(guān)系.

教師在此活動(dòng)中應(yīng)重點(diǎn)關(guān)注:

①學(xué)生能否主動(dòng)用“杠桿定律”中杠桿平衡的條件去理解實(shí)際問題,從而建立與反比例函數(shù)的關(guān)系;

②學(xué)生能否面對(duì)困難,認(rèn)真思考,尋找解題的途徑;

③學(xué)生能否積極主動(dòng)地參與數(shù)學(xué)活動(dòng),對(duì)數(shù)學(xué)和物理有著濃厚的興趣.

師:“撬動(dòng)石頭”就意味著達(dá)到了“杠桿平衡”,因此可用“杠桿定律”來(lái)解決此問題.

生:解:(1)根據(jù)“杠桿定律” 有

fl=1200×0.5.得f =600l

當(dāng)l=1.5時(shí),f=6001.5 =400.

因此,撬動(dòng)石頭至少需要400牛頓的力.

(2)若想使動(dòng)力f不超過題(1)中所用力的一半,即不超過200牛,根據(jù)“杠桿定律”有

fl=600,

l=600f .

當(dāng)f=400×12 =200時(shí),

l=600200 =3.

3-1.5=1.5(米)

因此,若想用力不超過400牛頓的一半,則動(dòng)力臂至少要如長(zhǎng)1.5米.

生:也可用不等式來(lái)解,如下:

fl=600,f=600l .

而f≤400×12 =200時(shí).

600l ≤200

l≥3.

所以l-1.5≥3-1.5=1.5.

即若想用力不超過400牛頓的一半,則動(dòng)力臂至少要加長(zhǎng)1.5米.

生:還可由函數(shù)圖象,利用反比例函數(shù)的性質(zhì)求出.

師:很棒!請(qǐng)同學(xué)們下去親自畫出圖象完成,現(xiàn)在請(qǐng)同學(xué)們思考下列問題:

用反比例函數(shù)的知識(shí)解釋:在我們使用橇棍時(shí),為什么動(dòng)力臂越長(zhǎng)越省力?

生:因?yàn)樽枇妥枇Ρ鄄蛔?,設(shè)動(dòng)力臂為l,動(dòng)力為f,阻力×阻力臂=k(常數(shù)且k>0),所以根據(jù)“杠桿定理”得fl=k,即f=kl (k為常數(shù)且k>0)

根據(jù)反比例函數(shù)的性質(zhì),當(dāng)k>o時(shí),在第一象限f隨l的增大而減小,即動(dòng)力臂越長(zhǎng)越省力.

師:其實(shí)反比例函數(shù)在實(shí)際運(yùn)用中非常廣泛.例如在解決經(jīng)濟(jì)預(yù)算問題中的應(yīng)用.

活動(dòng)3

問題:某地上年度電價(jià)為0.8元,年用電量為1億度,本年度計(jì)劃將電價(jià)調(diào)至0.55~0.75元之間,經(jīng)測(cè)算,若電價(jià)調(diào)至x元,則本年度新增用電量y(億度)與(x-0.4)元成反比例.又當(dāng)x=0.65元時(shí),y=0.8.(1)求y與x之間的函數(shù)關(guān)系式;(2)若每度電的成本價(jià)0.3元,電價(jià)調(diào)至0.6元,請(qǐng)你預(yù)算一下本年度電力部門的純收人多少?

設(shè)計(jì)意圖:

在生活中各部門,經(jīng)常遇到經(jīng)濟(jì)預(yù)算等問題,有時(shí)關(guān)系到因素之間是反比例函數(shù)關(guān)系,對(duì)于此類問題我們往往由題目提供的信息得到變量之間的函數(shù)關(guān)系式,進(jìn)而用函數(shù)關(guān)系式解決一個(gè)具體問題.

師生行為:

由學(xué)生先獨(dú)立思考,然后小組內(nèi)討論完成.

教師應(yīng)給予“學(xué)困生”以一定的幫助.

生:解:(1)∵y與x -0.4成反比例,

∴設(shè)y=kx-0.4 (k≠0).

把x=0.65,y=0.8代入y=kx-0.4 ,得

k0.65-0.4 =0.8.

解得k=0.2,

∴y=0.2x-0.4=15x-2

∴y與x之間的函數(shù)關(guān)系為y=15x-2

(2)根據(jù)題意,本年度電力部門的純收入為

(0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(億元)

答:本年度的純收人為0.6億元,

師生共析:

(1)由題目提供的信息知y與(x-0.4)之間是反比例函數(shù)關(guān)系,把x-0.4看成一個(gè)變量,于是可設(shè)出表達(dá)式,再由題目的條件x=0.65時(shí),y=0.8得出字母系數(shù)的值;

(2)純收入=總收入-總成本.

三、鞏固提高

活動(dòng)4

一定質(zhì)量的二氧化碳?xì)怏w,其體積y(m3)是密度ρ(kg/m3)的反比例函數(shù),請(qǐng)根據(jù)下圖中的已知條件求出當(dāng)密度ρ=1.1 kg/m3時(shí)二氧化碳?xì)怏w的體積v的值.

設(shè)計(jì)意圖:

進(jìn)一步體現(xiàn)物理和反比例函數(shù)的關(guān)系.

師生行為

由學(xué)生獨(dú)立完成,教師講評(píng).

師:若要求出ρ=1.1 kg/m3時(shí),v的值,首先v和ρ的函數(shù)關(guān)系.

生:v和ρ的反比例函數(shù)關(guān)系為:v=990ρ .

生:當(dāng)ρ=1.1kg/m3根據(jù)v=990ρ ,得

v=990ρ =9901.1 =900(m3).

所以當(dāng)密度ρ=1. 1 kg/m3時(shí)二氧化碳?xì)怏w的氣體為900m3.

四、課時(shí)小結(jié)

活動(dòng)5

你對(duì)本節(jié)內(nèi)容有哪些認(rèn)識(shí)?重點(diǎn)掌握利用函數(shù)關(guān)系解實(shí)際問題,首先列出函數(shù)關(guān)系式,利用待定系數(shù)法求出解 析式,再根據(jù)解析式解得.

設(shè)計(jì)意圖:

這種形式的小結(jié),激發(fā)了學(xué)生的主動(dòng)參與意識(shí),調(diào)動(dòng)了學(xué)生的學(xué)習(xí)興趣,為每一位學(xué)生都創(chuàng)造了在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn)機(jī)會(huì),并為程度不同的學(xué)生提供了充分展示自己的機(jī)會(huì),尊重學(xué)生的個(gè)體差異,滿足多樣化的學(xué)習(xí)需要,從而使小結(jié)不流于形式而具有實(shí)效性.

師生行為:

學(xué)生可分小組活動(dòng),在小組內(nèi)交流收獲, 然后由小組代表在全班交流.

教師組織學(xué)生小結(jié).

反比例函數(shù)與現(xiàn)實(shí)生活聯(lián)系非常緊密,特別是為討論物理中的一些量之間的關(guān)系打下了良好的基礎(chǔ).用數(shù)學(xué)模型的解釋物理量之間的關(guān)系淺顯易懂,同時(shí)不僅要注意跨學(xué)科間的綜合,而本學(xué)科知識(shí)間的整合也尤為重要,例如方程、不等式、函數(shù)之間的不可分割的關(guān)系.

板書設(shè)計(jì)

17.2 實(shí)際問題與反比例函數(shù)(三)

1.

2.用反比例函數(shù)的知識(shí)解釋:在我們使 用撬棍時(shí),為什么動(dòng) 力臂越長(zhǎng)越省力?

設(shè)阻力為f1,阻力臂長(zhǎng)為l1,所以f1×l1=k(k為常數(shù)且k>0).動(dòng)力和動(dòng)力臂分別為f,l.則根據(jù)杠桿定理,

fl=k 即f=kl (k>0且k為常數(shù)).

由此可知f是l的反比例函數(shù),并且當(dāng)k>0時(shí),f隨l的增大而減?。?/p>

活動(dòng)與探究

學(xué)校準(zhǔn)備在校園內(nèi)修建一個(gè)矩形的綠化帶,矩形的面積為定值,它的一邊y與另一邊x之間的函數(shù)關(guān)系式如下圖所示.

(1)綠化帶面積是多少?你能寫出這一函數(shù)表達(dá)式嗎?

(2)完成下表,并回答問題:如果該綠化帶的長(zhǎng)不得超過40m,那么它的寬應(yīng)控制在什么范圍內(nèi)?

x(m) 10 20 30 40

y(m)

過程:點(diǎn)a(40,10)在反比例函數(shù)圖象上說明點(diǎn)a的橫縱坐標(biāo)滿足反比例函數(shù)表達(dá)式,代入可求得反比例函數(shù)k的值.

結(jié)果:(1)綠化帶面積為10×40=400(m2)

設(shè)該反比例函數(shù)的表達(dá)式為y=kx ,

∵圖象經(jīng)過點(diǎn)a(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.

∴函數(shù)表達(dá)式為y=400x .

(2)把x=10,20,30,40代入表達(dá)式中,求得y分別為40,20,403 ,10.從圖中可以看出。若長(zhǎng)不超過40m,則它的寬應(yīng)大于等于10m。

成反比例的量教案篇5

教學(xué)目標(biāo)

(一)教學(xué)知識(shí)點(diǎn)

1.從現(xiàn)實(shí)情境和已有的知識(shí)經(jīng)驗(yàn)出發(fā),討論兩個(gè)變量之間的相似關(guān)系,加深對(duì)函數(shù)概念的理解.

2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念.

(二)能力訓(xùn)練要求

結(jié)合具體情境體會(huì)反比例函數(shù)的意義,能根據(jù)已知條件確定反比例函數(shù)表達(dá)式.

(三)情感與價(jià)值觀要求

結(jié)合實(shí)例引導(dǎo)學(xué)生了解所討論的函數(shù)的表達(dá)形式,形成反比例函數(shù)概念的具體形象,是從感性認(rèn)識(shí)到理性認(rèn)識(shí)的轉(zhuǎn)化過程,發(fā)展學(xué)生的思維;同時(shí)體驗(yàn)數(shù)學(xué)活動(dòng)與人類生活的密切聯(lián)系及對(duì)人類歷史發(fā)展的作用.

教學(xué)重點(diǎn)

經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念.

教學(xué)難點(diǎn)

領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念.

教學(xué)方法

教師引導(dǎo)學(xué)生進(jìn)行歸納.

教具準(zhǔn)備

投影片兩張

第一張:(記作5.1a)

第二張:(記作5.1b)

教學(xué)過程

Ⅰ.創(chuàng)設(shè)問題情境,引入新課

[師]我們?cè)谇懊鎸W(xué)過一次函數(shù)和正比例函數(shù),知道一次函數(shù)的表達(dá)式為y=kx+b,其中k,b為常數(shù)且k≠0,正比例函數(shù)的表達(dá)式為y=kx,其中k為不為零的常數(shù).但是在現(xiàn)實(shí)生活中,并不是只有這兩種類型的表達(dá)式,如從a地到b地的路程為1200km,某人開車要從a地到b地,汽車的速度v(km/h)和時(shí)間t(h)之間的關(guān)系式為vt=1200,則t=中t和v之間的關(guān)系式肯定不是正比例函數(shù)和一次函數(shù)的關(guān)系式,那么它們之間的關(guān)系式究竟是什么關(guān)系式呢?這就是本節(jié)課我們要揭開的奧秘。

Ⅱ.新課講解

[師]我們今天要學(xué)習(xí)的是反比例函數(shù),它是函數(shù)中的一種,首先我們先來(lái)回憶一下什么叫函數(shù)?

1.復(fù)習(xí)函數(shù)的定義

[師]大家還記得函數(shù)的定義嗎?

[生]記得.

在某變化過程中有兩個(gè)變量x,y.若給定其中一個(gè)變量x的值,y都有唯一確定的值與它對(duì)應(yīng),則稱y是x的函數(shù).

[師]大家能舉出實(shí)例嗎?

[生]可以.

例如購(gòu)買單價(jià)是0.4元的鉛筆,總金額y(元)與鉛筆數(shù)n(個(gè))的關(guān)系是y=0.4n.這是一個(gè)正比例函數(shù).

等腰三角形的頂角的度數(shù)y與底角的度數(shù)x的關(guān)系為y=180-2x,y是x的一次函數(shù).

[師]很好,我們復(fù)習(xí)了函數(shù)的定義以及正比例函數(shù)和一次函數(shù)的表達(dá)式以后,再來(lái)看下面實(shí)際問題中的變量之間是否存在函數(shù)關(guān)系,若是函數(shù)關(guān)系,那么是否為正比例或一次函數(shù)關(guān)系式.

2.經(jīng)歷抽象反比例函數(shù)概念的過程,并能類推歸納出反比例函數(shù)的表達(dá)式.

[師]請(qǐng)看下面的問題.

電流i,電阻r,電壓u之間滿足關(guān)系式u=ir,當(dāng)u=220v時(shí).

(1)你能用含有r的代數(shù)式表示i嗎?

(2)利用寫出的關(guān)系式完成下表:

r/Ω20406080100

i/a

當(dāng)r越來(lái)越大時(shí),i怎樣變化?當(dāng)r越來(lái)越小呢?

(3)變量i是r的函數(shù)嗎?為什么?

請(qǐng)大家交流后回答.

[生](1)能用含有r的代數(shù)式表示i.

由ir=220,得i=.

(2)利用上面的關(guān)系式可知,從左到右依次填11,5.5,3.67,2.75,2.2.

從表格中的數(shù)據(jù)可知,當(dāng)電阻r越來(lái)越大時(shí),電流i越來(lái)越??;當(dāng)r越來(lái)越小時(shí),i越來(lái)越大。

(3)變量i是r的函數(shù).

由ir=220得i=x,當(dāng)給定一個(gè)r的值時(shí),相應(yīng)地就確定了一個(gè)i值,因此i是r的函數(shù).

[師]這位同學(xué)回答的非常精彩,下面大家再思考一個(gè)問題.

舞臺(tái)燈光為什么在很短的時(shí)間內(nèi)將陽(yáng)光燦爛的晴日變成濃云密布的陰天,或由黑夜變成白晝的?請(qǐng)大家互相交流后回答.

[生]根據(jù)i=,當(dāng)r變大時(shí),i變小,燈光較暗;當(dāng)r變小時(shí),i變大,燈光較亮.所以通過改變電阻r的大小來(lái)控制電流i的變化,就可以在很短的時(shí)間內(nèi)將陽(yáng)光燦爛的晴日變成濃云密布的陰天,或由黑夜變成白晝.

投影片:(5.1a)

京滬高速公路全長(zhǎng)約為1262km,汽車沿京滬高速公路從上海駛往北京,汽車行完全程所需的時(shí)間t(h)與行駛的平均速度v(km/h)之間有怎樣的關(guān)系?變量t是v的函數(shù)嗎?為什么?

[師]經(jīng)過剛才的例題講解,大家可以獨(dú)立完成此題.如有困難再進(jìn)行交流.

[生]由路程等于速度乘以時(shí)間可知1262=vt,則有t=.當(dāng)給定一個(gè)v的值時(shí),相應(yīng)地就確定了一個(gè)t值,根據(jù)函數(shù)的定義可知t是v的函數(shù).

[師]從上面的兩個(gè)例題得出關(guān)系式

i=和t=

它們是函數(shù)嗎?它們是正比例函數(shù)嗎?是一次函數(shù)嗎?

[生]因?yàn)榻o定一個(gè)r的值,相應(yīng)地就確定了一個(gè)i的值,所以i是r的函數(shù);同理可知t是v的函數(shù),但是從表達(dá)式來(lái)看,它們既不是正比例函數(shù),也不是一次函數(shù).

[師]我們知道正比例函數(shù)的關(guān)系式為y=kx(k≠0),一次函數(shù)的關(guān)系式為y=kx+b(k,b為常數(shù)且k≠0).大家能否根據(jù)兩個(gè)例題歸納出這一類函數(shù)的表達(dá)式呢?

[生]可以.由i=與t=可知關(guān)系式為y=(k為常數(shù)且k≠0).

[師]很好.

一般地,如果兩個(gè)變量x、y之間的關(guān)系可以表示成y=(k為常數(shù),k≠0)的形式,那么稱y是x的反比例函數(shù).

從y=中可知x作為分母,所以x不能為零.

3.做一做

投影片(5.1b)

1.一個(gè)矩形的面積為20cm2,相鄰的兩條邊長(zhǎng)分別為xcm和ycm,那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?

2.某村有耕地346.2公頃,人口數(shù)量n逐年發(fā)生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數(shù)n的函數(shù)嗎?是反比例函數(shù)嗎?為什么?

3.y是x的反比例函數(shù),下表給出了x與y的一些值:

x-2-1

13

y

2-1

(1)寫出這個(gè)反比例函數(shù)的表達(dá)式;

(2)根據(jù)函數(shù)表達(dá)式完成上表.

[生]由面積等于長(zhǎng)乘以寬可得xy=20,則有y=x,變量y是變量x的函數(shù),因?yàn)榻o定一個(gè)x的值,相應(yīng)地就確定了一個(gè)y的值,根據(jù)函數(shù)的定義可知變量y是變量x的函數(shù).再根據(jù)反比例函數(shù)的表達(dá)式可知y是x的反比例函數(shù)。

[生]根據(jù)人均占有耕地面積等于總耕地面積除以總?cè)藬?shù)得m=x,給定一個(gè)n的值,就相應(yīng)地確定了一個(gè)m的值,因此m是n的函數(shù),又m=符合反比例函數(shù)的形式,所以是反比例函數(shù)。

[師]在做第3題之前,我們先回憶一下如何求正比例函數(shù)和一次函數(shù)的表達(dá)式,在y=kx中,要確定關(guān)系式的關(guān)鍵是求得非零常數(shù)k的值,因此需要一個(gè)條件即可;在一次函數(shù)y=kx+b中,要確定關(guān)系式實(shí)際上是要求得b和k的值,有兩個(gè)待定系數(shù)因此需要兩個(gè)條件。同理,在求反比例函數(shù)的表達(dá)式時(shí),實(shí)際上是要確定k的值,因此只需要一個(gè)條件即可,也就是要有一組x與y的值確定k的值.所以要從表格中進(jìn)行觀察,由x=-1,y=2確定k的值,然后再根據(jù)求出的表達(dá)式分別計(jì)算x或y的值。

[生]設(shè)反比例函數(shù)的表達(dá)式為

y=.

(1)當(dāng)x=-1時(shí),y=2;

∴k=-2.

∴表達(dá)式為y=-.

(2)當(dāng)x=-2時(shí),y=1.

當(dāng)x=-時(shí),y=4;

當(dāng)x=時(shí),y=-4;

當(dāng)x=1時(shí),y=-2.

當(dāng)x=3時(shí),y=-;

當(dāng)y=時(shí),x=-3;

當(dāng)y=-1時(shí),x=2.

因此表格中從左到右應(yīng)填

-3,1,4,-4,-2,2,-.

Ⅲ.課堂練習(xí)

隨堂練習(xí)(p131)

Ⅳ.課時(shí)小結(jié)

本節(jié)課我們學(xué)習(xí)了反比例函數(shù)的定義,并歸納總結(jié)出反比例函數(shù)的表達(dá)式為y=(k為常數(shù),k≠0),自變量x不能為零.還能根據(jù)定義和表達(dá)式判斷某兩個(gè)變量之間的關(guān)系是否是函數(shù),是什么函數(shù).

Ⅴ.課后作業(yè)

習(xí)題5.1

Ⅵ.活動(dòng)與探究

已知y-1與成反比例,且當(dāng)x=1時(shí),y=4,求y與x的函數(shù)表達(dá)式,并判斷是哪類函數(shù)?

分析:由y與x成反比例可知y=,得y-1與成反比例的關(guān)系式為y-1==k(x+2),由x=1、y=4確定k的值.從而求出表達(dá)式.

解:由題意可知y-1==k(x+2).

當(dāng)x=1時(shí),y=4.

所以3k=4-1,

k=1.

即表達(dá)式為y-1=x+2,

y=x+3.

由上可知y是x的一次函數(shù)。