教案高中數(shù)學(xué)模板5篇

時間:2023-01-23 作者:Kris 備課教案

要想將教案制定得更加優(yōu)秀,首先要做到認真回顧以往的教學(xué)情況,為了提升自己的教學(xué)質(zhì)量,大家一定要將教案先制定好,下面是范文社小編為您分享的教案高中數(shù)學(xué)模板5篇,感謝您的參閱。

教案高中數(shù)學(xué)模板5篇

教案高中數(shù)學(xué)模板篇1

教學(xué)目標

(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

(2)了解排列和排列數(shù)的意義,能根據(jù)具體的問題,寫出符合要求的排列;

(3)掌握排列數(shù)公式,并能根據(jù)具體的問題,寫出符合要求的排列數(shù);

(4)會分析與數(shù)字有關(guān)的排列問題,培養(yǎng)學(xué)生的抽象能力和邏輯思維能力;

(5)通過對排列應(yīng)用問題的學(xué)習(xí),讓學(xué)生通過對具體事例的觀察、歸納中找出規(guī)律,得出結(jié)論,以培養(yǎng)學(xué)生嚴謹?shù)膶W(xué)習(xí)態(tài)度。

教學(xué)建議

一、知識結(jié)構(gòu)

二、重點難點分析

本小節(jié)的重點是排列的定義、排列數(shù)及排列數(shù)的公式,并運用這個公式去解決有關(guān)排列數(shù)的應(yīng)用問題。難點是導(dǎo)出排列數(shù)的公式和解有關(guān)排列的應(yīng)用題。突破重點、難點的關(guān)鍵是對加法原理和乘法原理的掌握和運用,并將這兩個原理的基本思想方法貫穿在解決排列應(yīng)用問題當中。

從n個不同元素中任取m(m≤n)個元素,按照一定的順序排成一列,稱為從n個不同元素中任取m個元素的一個排列。因此,兩個相同排列,當且僅當他們的元素完全相同,并且元素的排列順序也完全相同。排列數(shù)是指從n個不同元素中任取m(m≤n)個元素的所有不同排列的種數(shù),只要弄清相同排列、不同排列,才有可能計算相應(yīng)的排列數(shù)。排列與排列數(shù)是兩個概念,前者是具有m個元素的排列,后者是這種排列的不同種數(shù)。從集合的角度看,從n個元素的有限集中取出m個組成的有序集,相當于一個排列,而這種有序集的個數(shù),就是相應(yīng)的排列數(shù)。

公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來講解。要重點分析好 的推導(dǎo)。

排列的應(yīng)用題是本節(jié)教材的難點,通過本節(jié)例題的分析,應(yīng)注意培養(yǎng)學(xué)生解決應(yīng)用問題的能力。

在分析應(yīng)用題的解法時,教材上先畫出框圖,然后分析逐次填入時的種數(shù),這樣解釋比較直觀,教學(xué)上要充分利用,要求學(xué)生作題時也應(yīng)盡量采用。

在教學(xué)排列應(yīng)用題時,開始應(yīng)要求學(xué)生寫解法要有簡要的文字說明,防止單純的只寫一個排列數(shù),這樣可以培養(yǎng)學(xué)生的分析問題的能力,在基本掌握之后,可以逐漸地不作這方面的要求。

三、教法建議

①在講解排列數(shù)的概念時,要注意區(qū)分“排列數(shù)”與“一個排列”這兩個概念。一個排列是指“從n個不同元素中,任取出m個元素,按照一定的順序擺成一排”,它不是一個數(shù),而是具體的一件事;排列數(shù)是指“從n個不同元素中取出m個元素的所有排列的個數(shù)”,它是一個數(shù)。例如,從3個元素a,b,c中每次取出2個元素,按照一定的順序排成一排,有如下幾種:

ab,ac,ba,bc,ca,cb,

其中每一種都叫一個排列,共有6種,而數(shù)字6就是排列數(shù),符號 表示排列數(shù)。

②排列的定義中包含兩個基本內(nèi)容,一是“取出元素”,二是“按一定順序排列”。

從定義知,只有當元素完全相同,并且元素排列的順序也完全相同時,才是同一個排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列。

在定義中“一定順序”就是說與位置有關(guān),在實際問題中,要由具體問題的性質(zhì)和條件來決定,這一點要特別注意,這也是與后面學(xué)習(xí)的組合的根本區(qū)別。

在排列的定義中 ,如果 有的書上叫選排列,如果 ,此時叫全排列。

要特別注意,不加特殊說明,本章不研究重復(fù)排列問題。

③關(guān)于排列數(shù)公式的推導(dǎo)的教學(xué)。公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來講解。課本上用的是不完全歸納法,先推導(dǎo) , ,…,再推廣到 ,這樣由特殊到一般,由具體到抽象的講法,學(xué)生是不難理解的。

導(dǎo)出公式 后要分析這個公式的構(gòu)成特點,以便幫助學(xué)生正確地記憶公式,防止學(xué)生在“n”、“m”比較復(fù)雜的時候把公式寫錯。這個公式的特點可見課本第229頁的一段話:“其中,公式右邊第一個因數(shù)是n,后面每個因數(shù)都比它前面一個因數(shù)少1,最后一個因數(shù)是 ,共m個因數(shù)相乘?!边@實際是講三個特點:第一個因數(shù)是什么?最后一個因數(shù)是什么?一共有多少個連續(xù)的自然數(shù)相乘。

公式 是在引出全排列數(shù)公式 后,將排列數(shù)公式變形后得到的公式。對這個公式指出兩點:(1)在一般情況下,要計算具體的排列數(shù)的值,常用前一個公式,而要對含有字母的排列數(shù)的式子進行變形或作有關(guān)的論證,要用到這個公式,教材中第230頁例2就是用這個公式證明的問題;(2)為使這個公式在 時也能成立,規(guī)定 ,如同 時 一樣,是一種規(guī)定,因此,不能按階乘數(shù)的原意作解釋。

④建議應(yīng)充分利用樹形圖對問題進行分析,這樣比較直觀,便于理解。

⑤學(xué)生在開始做排列應(yīng)用題的作業(yè)時,應(yīng)要求他們寫出解法的簡要說明,而不能只列出算式、得出答數(shù),這樣有利于學(xué)生得更加扎實。隨著學(xué)生解題熟練程度的提高,可以逐步降低這種要求。

教案高中數(shù)學(xué)模板篇2

一、教學(xué)內(nèi)容分析

向量作為工具在數(shù)學(xué)、物理以及實際生活中都有著廣泛的應(yīng)用。

本小節(jié)的重點是結(jié)合向量知識證明數(shù)學(xué)中直線的平行、垂直問題,以及不等式、三角公式的證明、物理學(xué)中的應(yīng)用。

二、教學(xué)目標設(shè)計

1、通過利用向量知識解決不等式、三角及物理問題,感悟向量作為一種工具有著廣泛的應(yīng)用,體會從不同角度去看待一些數(shù)學(xué)問題,使一些數(shù)學(xué)知識有機聯(lián)系,拓寬解決問題的思路。

2、了解構(gòu)造法在解題中的運用。

三、教學(xué)重點及難點

重點:平面向量知識在各個領(lǐng)域中應(yīng)用。

難點:向量的構(gòu)造。

四、教學(xué)流程設(shè)計

五、教學(xué)過程設(shè)計

一、復(fù)習(xí)與回顧

1、提問:下列哪些量是向量?

(1)力 (2)功 (3)位移 (4)力矩

2、上述四個量中,(1)(3)(4)是向量,而(2)不是,那它是什么?

[說明]復(fù)習(xí)數(shù)量積的有關(guān)知識。

二、學(xué)習(xí)新課

例1(書中例5)

向量作為一種工具,不僅在物理學(xué)科中有廣泛的應(yīng)用,同時它在數(shù)學(xué)學(xué)科中也有許多妙用!請看

例2(書中例3)

證法(一)原不等式等價于,由基本不等式知(1)式成立,故原不等式成立。

證法(二)向量法

[說明]本例關(guān)鍵引導(dǎo)學(xué)生觀察不等式結(jié)構(gòu)特點,構(gòu)造向量,并發(fā)現(xiàn)(等號成立的充要條件是)

例3(書中例4)

[說明]本例的關(guān)鍵在于構(gòu)造單位圓,利用向量數(shù)量積的兩個公式得到證明。

二、鞏固練習(xí)

1、如圖,某人在靜水中游泳,速度為 km/h.

(1)如果他徑直游向河對岸,水的流速為4 km/h,他實際沿什么方向前進?速度大小為多少?

答案:沿北偏東方向前進,實際速度大小是8 km/h.

(2) 他必須朝哪個方向游才能沿與水流垂直的方向前進?實際前進的速度大小為多少?

答案:朝北偏西方向前進,實際速度大小為km/h.

三、課堂小結(jié)

1、向量在物理、數(shù)學(xué)中有著廣泛的應(yīng)用。

2、要學(xué)會從不同的角度去看一個數(shù)學(xué)問題,是數(shù)學(xué)知識有機聯(lián)系。

四、作業(yè)布置

1、書面作業(yè):課本p73, 練習(xí)8.4 4

教案高中數(shù)學(xué)模板篇3

?考綱要求】

了解雙曲線的定義,幾何圖形和標準方程,知道它的簡單性質(zhì)。

?自學(xué)質(zhì)疑】

1、雙曲線 的 軸在 軸上, 軸在 軸上,實軸長等于 ,虛軸長等于 ,焦距等于 ,頂點坐標是 ,焦點坐標是 ,

漸近線方程是 ,離心率 ,若點 是雙曲線上的點,則 , 。

2、又曲線 的左支上一點到左焦點的距離是7,則這點到雙曲線的右焦點的距離是

3、經(jīng)過兩點 的雙曲線的標準方程是 。

4、雙曲線的漸近線方程是 ,則該雙曲線的離心率等于 。

5、與雙曲線 有公共的漸近線,且經(jīng)過點 的雙曲線的方程為

?例題精講】

1、雙曲線的離心率等于 ,且與橢圓 有公共焦點,求該雙曲線的方程。

2、已知橢圓具有性質(zhì):若 是橢圓 上關(guān)于原點對稱的兩個點,點 是橢圓上任意一點,當直線 的斜率都存在,并記為 時,那么 之積是與點 位置無關(guān)的定值,試對雙曲線 寫出具有類似特性的性質(zhì),并加以證明。

3、設(shè)雙曲線 的半焦距為 ,直線 過 兩點,已知原點到直線 的距離為 ,求雙曲線的離心率。

?矯正鞏固】

1、雙曲線 上一點 到一個焦點的距離為 ,則它到另一個焦點的距離為 。

2、與雙曲線 有共同的漸近線,且經(jīng)過點 的雙曲線的一個焦點到一條漸近線的距離是 。

3、若雙曲線 上一點 到它的右焦點的距離是 ,則點 到 軸的距離是

4、過雙曲線 的左焦點 的直線交雙曲線于 兩點,若 。則這樣的直線一共有 條。

?遷移應(yīng)用】

1、 已知雙曲線 的焦點到漸近線的距離是其頂點到漸近線距離的2倍,則該雙曲線的離心率

2、 已知雙曲線 的焦點為 ,點 在雙曲線上,且 ,則點 到 軸的距離為 。

3、 雙曲線 的焦距為

4、 已知雙曲線 的一個頂點到它的一條漸近線的距離為 ,則

5、 設(shè) 是等腰三角形, ,則以 為焦點且過點 的雙曲線的離心率為 。

6、 已知圓 。以圓 與坐標軸的交點分別作為雙曲線的一個焦點和頂點,則適合上述條件的雙曲線的標準方程為

教案高中數(shù)學(xué)模板篇4

[學(xué)習(xí)目標]

(1)會用坐標法及距離公式證明cα+β;

(2)會用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由cα+β推導(dǎo)cα—β、sα±β、tα±β,切實理解上述公式間的關(guān)系與相互轉(zhuǎn)化;

(3)掌握公式cα±β、sα±β、tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。

[學(xué)習(xí)重點]

兩角和與差的正弦、余弦、正切公式

[學(xué)習(xí)難點]

余弦和角公式的推導(dǎo)

[知識結(jié)構(gòu)]

1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標法,利用三角函數(shù)定義及平面內(nèi)兩點間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過程見課本)

2、通過下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

3、當α、β中有一個是的整數(shù)倍時,應(yīng)首選誘導(dǎo)公式進行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。

4、關(guān)于公式的正用、逆用及變用

教案高中數(shù)學(xué)模板篇5

一、教學(xué)目標

知識與技能:

理解任意角的概念(包括正角、負角、零角)與區(qū)間角的概念。

過程與方法:

會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。

情感態(tài)度與價值觀:

1、提高學(xué)生的推理能力;

2、培養(yǎng)學(xué)生應(yīng)用意識。

二、教學(xué)重點、難點:

教學(xué)重點:

任意角概念的理解;區(qū)間角的集合的書寫。

教學(xué)難點:

終邊相同角的集合的表示;區(qū)間角的集合的書寫。

三、教學(xué)過程

(一)導(dǎo)入新課

1、回顧角的定義

①角的第一種定義是有公共端點的兩條射線組成的圖形叫做角。

②角的第二種定義是角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。

(二)教學(xué)新課

1、角的有關(guān)概念:

①角的定義:

角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。

②角的名稱:

注意:

⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡化成“α ”;

⑵零角的終邊與始邊重合,如果α是零角α =0°;

⑶角的概念經(jīng)過推廣后,已包括正角、負角和零角。

⑤練習(xí):請說出角α、β、γ各是多少度?

2、象限角的概念:

①定義:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角。

例1、如圖⑴⑵中的角分別屬于第幾象限角?