八年級數(shù)學(xué)上教案7篇

時(shí)間:2022-12-01 作者:couple 備課教案

作為一名教師必須了解教案的組成,作為教師在制定教案時(shí)一定要保持邏輯思路清晰,下面是范文社小編為您分享的八年級數(shù)學(xué)上教案7篇,感謝您的參閱。

八年級數(shù)學(xué)上教案7篇

八年級數(shù)學(xué)上教案篇1

一、教學(xué)目的:

1.掌握菱形概念,知道菱形與平行四邊形的關(guān)系.

2.理解并掌握菱形的定義及性質(zhì)1、2;會(huì)用這些性質(zhì)進(jìn)行有關(guān)的論證和計(jì)算,會(huì)計(jì)算菱形的面積.

3.通過運(yùn)用菱形知識(shí)解決具體問題,提高分析能力和觀察能力.

4.根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想.

二、重點(diǎn)、難點(diǎn)

1.教學(xué)重點(diǎn):

菱形的性質(zhì)1、2.

2.教學(xué)難點(diǎn):

菱形的性質(zhì)及菱形知識(shí)的綜合應(yīng)用.

三、課堂引入

1.(復(fù)習(xí))什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關(guān)系是什么?

2.(引入)我們已經(jīng)學(xué)習(xí)了一種特殊的平行四邊形——矩形,其實(shí)還有另外的特殊平行四邊形,請看演示:(可將事先按如圖做成的一組對邊可以活動(dòng)的教具進(jìn)行演示)如圖,改變平行四邊形的邊,使之一組鄰邊相等,從而引出菱形概念.

菱形定義:有一組鄰邊相等的平行四邊形叫做菱形.

?強(qiáng)調(diào)】 菱形(1)是平行四邊形;(2)一組鄰邊相等.

讓學(xué)生舉一些日常生活中所見到過的菱形的例子.

四、例習(xí)題分析

例1(補(bǔ)充)已知:如圖,四邊形abcd是菱形,f是ab上一點(diǎn),df交ac于e.

求證:∠afd=∠cbe.

證明:∵四邊形abcd是菱形,

∴ cb=cd,ca平分∠bcd.

∴∠bce=∠dce.又ce=ce,

∴△bce≌△cob(sas).

∴∠cbe=∠cde.

∵ 在菱形abcd中,ab∥cd,∴∠afd=∠fdc

∴ ∠afd=∠cbe.

例2(教材p108例2)略

五、隨堂練習(xí)

1.若菱形的邊長等于一條對角線的長,則它的一組鄰角的度數(shù)分別為.

2.已知菱形的兩條對角線分別是6cm和8cm,求菱形的周長和面積.

3.已知菱形abcd的周長為20cm,且相鄰兩內(nèi)角之比是1∶2,求菱形的對角線的長和面積.

4.已知:如圖,菱形abcd中,e、f分別是cb、cd上的點(diǎn),且be=df.求證:∠aef=∠afe.

六、課后練習(xí)

1.菱形abcd中,∠d∶∠a=3∶1,菱形的周長為8cm,求菱形的高.

2.如圖,四邊形abcd是邊長為13cm的菱形,其中對角線bd長10cm,求(1)對角線ac的長度;(2)菱形abcd的面積.

八年級數(shù)學(xué)上教案篇2

教學(xué)目的:

1、在具體的操作活動(dòng)中,讓學(xué)生認(rèn)、讀、寫11-20各數(shù),掌握20以內(nèi)數(shù)的順序,初步建立數(shù)位的概念。

2、結(jié)合學(xué)生的實(shí)際情況,讓學(xué)生填寫算式。

3、在教學(xué)中滲透數(shù)的順序,并進(jìn)行社會(huì)秩序教育。

4、學(xué)會(huì)與人合作,體會(huì)計(jì)算的多樣化,發(fā)展學(xué)生思維。

教學(xué)重點(diǎn):

掌握20以內(nèi)數(shù)的順序。

教學(xué)難點(diǎn):

初步建立數(shù)的概念

教學(xué)準(zhǔn)備:

每組一個(gè)數(shù)位計(jì)數(shù)器及40-50根小棒等。

教學(xué)方法:

抓問題,用多種游戲,把抽象的數(shù)位具體化。

教學(xué)步驟:

一、創(chuàng)設(shè)情景,尋找關(guān)鍵問題

1、數(shù)學(xué)課研究數(shù)學(xué)問題,一些小棒會(huì)有什么數(shù)學(xué)問題。

(每張桌子發(fā)40-50根小棒,玩小棒時(shí)間為3-5分鐘)

2、你發(fā)現(xiàn)了什么數(shù)學(xué)問題。

(目的:練習(xí)20以內(nèi)數(shù)的順序,也可以在玩小棒中發(fā)現(xiàn)十根捆一捆)

3、游戲,看誰的手小巧。

老師報(bào)數(shù),學(xué)生用棒子表示,討論:快的同學(xué)的訣竅。

出示:十根可以捆一捆。

再進(jìn)行游戲,讓學(xué)生習(xí)慣中把1捆當(dāng)作10根用。

4、完成:

()個(gè)一()個(gè)十

試一試,在計(jì)數(shù)器拔出10

個(gè)位只有幾顆珠子,怎么辦?(10個(gè)一是1個(gè)10)

在個(gè)位拔上一顆珠子,表示1個(gè)十,也表示10個(gè)一。

二、自主合作,解決數(shù)位順序。

在解決了10是1個(gè)十也是10個(gè)一后,還能過度試一試在計(jì)數(shù)器上表示。接下來就是讓學(xué)生通過自主合作,數(shù)位,組成和算式結(jié)合,理解11-20各數(shù)。

1、11-20各數(shù)在計(jì)數(shù)器上怎么表示呢?

問題提出后,可以組織學(xué)生討論交流,并加以解決,并結(jié)合p68的圖示表達(dá)自己的想法,學(xué)生之間互相交流,實(shí)現(xiàn)生生互動(dòng)。

(這兒注意11-20的表達(dá)多樣,只要求至少一樣,方法選擇,方法應(yīng)用應(yīng)由學(xué)生通過自主交流來確定。)

2、

1個(gè)十,1個(gè)一是1110+1=11

10和11,十位上是1,沒有變,個(gè)位由0變成1,就是11。

3、15、19、20的數(shù)位可重點(diǎn)檢查。

(20的數(shù)位可由10-20,也可19-20來描述。)

4、小結(jié),從右邊起,第一位是個(gè)位,第二位是十位,數(shù)位不一樣,數(shù)也不一樣,十位上1表示1個(gè)十,個(gè)位上1表示1個(gè)一。

5、練習(xí):(口算)

10+910+810+710+610+5

10+410+39+108+107+10

6+105+104+103+10

三、實(shí)踐應(yīng)用,實(shí)現(xiàn)知識(shí)延伸

1、尋找粗心丟失的數(shù)。

游戲報(bào)數(shù)。(報(bào)數(shù)時(shí)丟一些中間數(shù))

2、開火車順數(shù)

游戲:數(shù)數(shù)(順數(shù)和倒數(shù))

3、拔珠游戲(師生――生生)

報(bào)數(shù)13,拔13并寫出13,同時(shí)說13的含義,還可畫珠。

4、p691-6自己完成。

四、課外實(shí)踐,拓展知識(shí)應(yīng)用。

1、完成10-20各數(shù)數(shù)位圖及小棒圖。

2、和父母互說10-20各數(shù)組成。

八年級數(shù)學(xué)上教案篇3

教學(xué)目標(biāo)

1、知識(shí)與技能目標(biāo)

(1)通過拼圖活動(dòng),讓學(xué)生感受無理數(shù)產(chǎn)生的實(shí)際背景和引入的必要性.

(2)能判斷給出的數(shù)是否為無理數(shù),并能說出理由.

2、過程與方法目標(biāo)

(1)學(xué)生親自動(dòng)手做拼圖活動(dòng),感受無理數(shù)存在的必要性和合理性,培養(yǎng)學(xué)生的動(dòng)手能力和合作精神.

(2)通過回顧有理數(shù)的有關(guān)知識(shí),能正確地進(jìn)行推理和判斷識(shí)別某些數(shù)是否為有理數(shù)、無理數(shù),訓(xùn)練他們的思維判斷力.

(3)借助計(jì)算器進(jìn)行估算,培養(yǎng)學(xué)生的估算能力,發(fā)展學(xué)生的抽象概括能力,并在活動(dòng)中進(jìn)一步發(fā)展學(xué)生獨(dú)立思考、合作交流的意識(shí)和能力.

3、情感與態(tài)度目標(biāo)

(1)激勵(lì)學(xué)生積極參與教學(xué)活動(dòng),提高大家學(xué)習(xí)數(shù)學(xué)的熱情.

(2)引導(dǎo)學(xué)生充分進(jìn)行交流,討論與探索等教學(xué)活動(dòng),培養(yǎng)他們的合作精神與鉆研精神,借助計(jì)算器進(jìn)行估算.

(3)了解有關(guān)無理數(shù)發(fā)現(xiàn)的知識(shí),鼓勵(lì)學(xué)生大膽質(zhì)疑,培養(yǎng)他們?yōu)檎胬矶鴬^半的獻(xiàn)身精神.

教學(xué)重點(diǎn)

1、讓學(xué)生經(jīng)歷無理數(shù)發(fā)現(xiàn)的過程,感知生活中確實(shí)存在著不同于有理數(shù)的數(shù).

2、會(huì)判斷一個(gè)數(shù)是否為有理數(shù),是否不是有理數(shù).

3、用計(jì)算器進(jìn)行無理數(shù)的估算.

教學(xué)難點(diǎn)

1、把兩個(gè)邊長為1的正方形拼成一個(gè)大正方形的動(dòng)手操作過程.

2、無理數(shù)概念的建立及估算.

3、判斷一個(gè)數(shù)是否為有理數(shù).

教學(xué)準(zhǔn)備:

多媒體,兩個(gè)邊長為1的正方形,剪刀,短繩.

教學(xué)過程:

第一環(huán)節(jié):章節(jié)引入(2分鐘,學(xué)生閱讀感受)

內(nèi)容:.小紅是剛升入八年級的新生,一個(gè)周末的上午,當(dāng)工程師的爸爸給小紅出了兩個(gè)數(shù)學(xué)題:

(1)兩個(gè)數(shù)3.252525……與3.252252225……一樣嗎?它們有什么不同?

(2)一個(gè)邊長為6cm的正方形木板,按如圖的痕跡鋸掉四個(gè)一樣的直角三角形.請計(jì)算剩下的正方形木板的面積是多少?剩下的正方形木板的邊長又是多少厘米呢?你能幫小紅解決這個(gè)問題嗎?

b.你能求出面積為2的正方形的邊長嗎?你知道圓周率的精確值嗎?它們能用整數(shù)或分?jǐn)?shù)(即有理數(shù))來表示嗎?

第二環(huán)節(jié):復(fù)習(xí)引入(3分鐘,學(xué)生口答)

內(nèi)容:閱讀下面的資料,在數(shù)學(xué)中,有理數(shù)的定義為:形如的數(shù)(p、q為互質(zhì)的整數(shù),且p≠0)叫做有理數(shù),當(dāng)p=1,q為任意整數(shù)時(shí),有理數(shù)就是指所有的整數(shù),如:=-2等,當(dāng)p≠1時(shí),由p、q互質(zhì)可知,有理數(shù)就是指所有的分?jǐn)?shù),如,-,-等,綜上所述,有理數(shù)就是整數(shù)和分?jǐn)?shù)的統(tǒng)稱.

請用上述材料中所涉及的知識(shí)證明下面的問題:

a.直角邊長分別為3和1的直角三角形的斜邊長是不是有理數(shù)?

b.復(fù)習(xí)前面學(xué)過的數(shù),有理數(shù)包括整數(shù)和分?jǐn)?shù),有理數(shù)范圍是否滿足實(shí)際生活的需要呢?

第三環(huán)節(jié):活動(dòng)探究(15分鐘,學(xué)生動(dòng)手操作,小組合作探究)

(一)發(fā)現(xiàn)新數(shù)

內(nèi)容:將課前已準(zhǔn)備好的兩個(gè)邊長為1的小正方形剪一剪,拼一拼,設(shè)法得到一個(gè)大正方形.

在學(xué)生活動(dòng)的基礎(chǔ)上,教師利用多媒體展示其中一種剪拼過程,并拋出下面的議一議:

(1)設(shè)大正方形的邊長為,應(yīng)滿足什么條件?

(2)滿足:2=2的數(shù)是一個(gè)什么樣的數(shù)?可能是整數(shù)嗎?說明你的理由?

(3)可能是分?jǐn)?shù)嗎?說說你的理由?

引出課題《數(shù)怎么又不夠用了》

(二)感受新數(shù)的廣泛性

內(nèi)容:面積為5的正方形,它的邊長b可能是有理數(shù)嗎?說說你的理由。

(三)鞏固驗(yàn)證,應(yīng)用拓展

內(nèi)容:ab,c是一個(gè)生活小區(qū)的兩個(gè)路口,bc長為2千米,a處是一個(gè)花園,從a到b,c兩路口的距離都是2千米,現(xiàn)要從花園到生活小區(qū)修一條最短的路,這條路的長可能是整數(shù)嗎?可能是分?jǐn)?shù)嗎?說明理由.

b如圖(1)是由16個(gè)邊長為1的小正方形拼成的,試從連接這些

小正方形的兩個(gè)頂點(diǎn)所得的線段中,分別找出兩條長度是有理數(shù)的線段,兩條長度不是有理數(shù)的線段

第四環(huán)節(jié):介紹歷史,開闊視野(3分鐘,學(xué)生閱讀)

內(nèi)容:早在公元前,古希臘數(shù)學(xué)家畢達(dá)哥拉斯認(rèn)為萬物皆“數(shù)”,即“宇宙間的一切現(xiàn)象都能歸結(jié)為整數(shù)或整數(shù)之比”,也就是一切現(xiàn)象都可用有理數(shù)去描述.后來,這個(gè)學(xué)派中的一個(gè)叫希伯索斯的成員發(fā)現(xiàn)邊長為1的正方形的對角線的長不能用整數(shù)或整數(shù)之比來表示,這個(gè)發(fā)現(xiàn)動(dòng)搖了畢達(dá)哥拉斯學(xué)派的信條,據(jù)說,為此希伯斯被投進(jìn)了大海,他為真理而獻(xiàn)出了寶貴的生命,但真理是不可戰(zhàn)勝的,后來,古希臘人終于正視了希伯索斯的發(fā)現(xiàn).

第五環(huán)節(jié):課時(shí)小結(jié)(2分鐘,全班交流)

內(nèi)容談?wù)劚竟?jié)課你有什么收獲與體會(huì)?有哪些困難需要?jiǎng)e人幫你解決?

b感受數(shù)不夠用了,會(huì)確定一個(gè)數(shù)是有理數(shù)或不是有理數(shù).

c本節(jié)課用到基本方法:動(dòng)手、操作、觀察、思考,猜想驗(yàn)證,推理,歸納等過程,獲取數(shù)學(xué)知識(shí).

第六環(huán)節(jié):布置作業(yè)

八年級數(shù)學(xué)上教案篇4

教學(xué)目標(biāo):

1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進(jìn)一步發(fā)展學(xué)生的合情推力意識(shí),主動(dòng)探究的習(xí)慣,進(jìn)一步體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系。

2、探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進(jìn)一步發(fā)展學(xué)生的說理和簡單的推理的意識(shí)及能力。

重點(diǎn)難點(diǎn):

重點(diǎn):了解勾股定理的由來,并能用它來解決一些簡單的問題。

難點(diǎn):勾股定理的發(fā)現(xiàn)

教學(xué)過程

一、創(chuàng)設(shè)問題的情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,導(dǎo)入課題

出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻(xiàn),并結(jié)合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學(xué)家)在勾股定理方面的貢獻(xiàn)。

出示投影2(書中的p2圖1—2)并回答:

1、觀察圖1-2,正方形a中有_______個(gè)小方格,即a的面積為______個(gè)單位。

正方形b中有_______個(gè)小方格,即a的面積為______個(gè)單位。

正方形c中有_______個(gè)小方格,即a的面積為______個(gè)單位。

2、你是怎樣得出上面的結(jié)果的?在學(xué)生交流回答的基礎(chǔ)上教師直接發(fā)問:

3、圖1—2中,a,b,c之間的面積之間有什么關(guān)系?

學(xué)生交流后形成共識(shí),教師板書,a+b=c,接著提出圖1—1中的a.b,c的關(guān)系呢?

二、做一做

出示投影3(書中p3圖1—4)提問:

1、圖1—3中,a,b,c之間有什么關(guān)系?

2、圖1—4中,a,b,c之間有什么關(guān)系?

3、從圖1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?

學(xué)生討論、交流形成共識(shí)后,教師總結(jié):

以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。

三、議一議

1、圖1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?

2、你能發(fā)現(xiàn)直角三角形三邊長度之間的關(guān)系嗎?

在同學(xué)的交流基礎(chǔ)上,老師板書:

直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”

也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c

那么

我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。

3、分別以5厘米和12厘米為直角邊做出一個(gè)直角三角形,并測量斜邊的長度(學(xué)生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個(gè)三角形仍然成立嗎?(回答是肯定的:成立)

四、想一想

這里的29英寸(74厘米)的電視機(jī),指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?

五、鞏固練習(xí)

1、錯(cuò)例辨析:

△abc的兩邊為3和4,求第三邊

解:由于三角形的兩邊為3、4

所以它的第三邊的c應(yīng)滿足=25

即:c=5

辨析:(1)要用勾股定理解題,首先應(yīng)具備直角三角形這個(gè)必不可少的條件,可本題

△abc并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。

(2)若告訴△abc是直角三角形,第三邊c也不一定是滿足,題目中并為交待c是斜邊

綜上所述這個(gè)題目條件不足,第三邊無法求得。

2、練習(xí)p7§1.11

六、作業(yè)

課本p7§1.12、3、4

八年級數(shù)學(xué)上教案篇5

教學(xué)目標(biāo):

知識(shí)與技能

1.掌握直角三角形的判別條件,并能進(jìn)行簡單應(yīng)用;

2.進(jìn)一步發(fā)展數(shù)感,增加對勾股數(shù)的直觀體驗(yàn),培養(yǎng)從實(shí)際問題抽象出數(shù)學(xué)問題的能力,建立數(shù)學(xué)模型.

3.會(huì)通過邊長判斷一個(gè)三角形是否是直角三角形,并會(huì)辨析哪些問題應(yīng)用哪個(gè)結(jié)論.

情感態(tài)度與價(jià)值觀

敢于面對數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問題的成功經(jīng)驗(yàn),進(jìn)一步體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動(dòng)的意識(shí).

教學(xué)重點(diǎn)

運(yùn)用身邊熟悉的事物,從多種角度發(fā)展數(shù)感,會(huì)通過邊長判斷一個(gè)三角形是否是直角三角形,并會(huì)辨析哪些問題應(yīng)用哪個(gè)結(jié)論.

教學(xué)難點(diǎn)

會(huì)辨析哪些問題應(yīng)用哪個(gè)結(jié)論.

課前準(zhǔn)備

標(biāo)有單位長度的細(xì)繩、三角板、量角器、題篇

教學(xué)過程:

復(fù)習(xí)引入:

請學(xué)生復(fù)述勾股定理;使用勾股定理的前提條件是什么?

已知△abc的兩邊ab=5,ac=12,則bc=13對嗎?

創(chuàng)設(shè)問題情景:由課前準(zhǔn)備好的一組學(xué)生以小品的形式演示教材第9頁古埃及造直角的方法.

這樣做得到的是一個(gè)直角三角形嗎?

提出課題:能得到直角三角形嗎

講授新課:

⒈、如何來判斷?(用直角三角板檢驗(yàn))

這個(gè)三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關(guān)系?

就是說,如果三角形的三邊為,,,請猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當(dāng)滿足較小兩邊的平方和等于較大邊的平方時(shí))

⒉、繼續(xù)嘗試:下面的'三組數(shù)分別是一個(gè)三角形的三邊長a,b,c:

5,12,13;6,8,10;8,15,17.

(1)這三組數(shù)都滿足a2+b2=c2嗎?

(2)分別以每組數(shù)為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?

⒊、直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形.

滿足a2+b2=c2的三個(gè)正整數(shù),稱為勾股數(shù).

⒋例1一個(gè)零件的形狀如左圖所示,按規(guī)定這個(gè)零件中∠a和∠dbc都應(yīng)為直角.工人師傅量得這個(gè)零件各邊尺寸如右圖所示,這個(gè)零件符合要求嗎?

隨堂練習(xí):

⒈、下列幾組數(shù)能否作為直角三角形的三邊長?說說你的理由.

⑴9,12,15;⑵15,36,39;

⑶12,35,36;⑷12,18,22.

⒉、已知?abc中bc=41,ac=40,ab=9,則此三角形為_______三角形,______是角.

⒊、四邊形abcd中已知ab=3,bc=4,cd=12,da=13,且∠abc=900,求這個(gè)四邊形的面積.

⒋、習(xí)題1.3

課堂小結(jié):

⒈直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形.

⒉滿足a2+b2=c2的三個(gè)正整數(shù),稱為勾股數(shù).勾股數(shù)擴(kuò)大相同倍數(shù)后,仍為勾股數(shù).

八年級數(shù)學(xué)上教案篇6

一、學(xué)習(xí)目標(biāo)

1.使學(xué)生了解運(yùn)用公式法分解因式的意義;

2.使學(xué)生掌握用平方差公式分解因式

二、重點(diǎn)難點(diǎn)

重點(diǎn):掌握運(yùn)用平方差公式分解因式。

難點(diǎn):將單項(xiàng)式化為平方形式,再用平方差公式分解因式。

學(xué)習(xí)方法:歸納、概括、總結(jié)。

三、合作學(xué)習(xí)

創(chuàng)設(shè)問題情境,引入新課

在前兩學(xué)時(shí)中我們學(xué)習(xí)了因式分解的定義,即把一個(gè)多項(xiàng)式分解成幾個(gè)整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個(gè)多項(xiàng)式中,若各項(xiàng)都含有相同的因式,即公因式,就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成幾個(gè)因式乘積的形式。

如果一個(gè)多項(xiàng)式的各項(xiàng),不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項(xiàng)式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時(shí)我們就來學(xué)習(xí)另外的一種因式分解的方法——公式法。

1.請看乘法公式

左邊是整式乘法,右邊是一個(gè)多項(xiàng)式,把這個(gè)等式反過來就是左邊是一個(gè)多項(xiàng)式,右邊是整式的乘積。大家判斷一下,第二個(gè)式子從左邊到右邊是否是因式分解?

利用平方差公式進(jìn)行的因式分解,第(2)個(gè)等式可以看作是因式分解中的平方差公式。

a2—b2=(a+b)(a—b)

2.公式講解

如x2—16

=(x)2—42

=(x+4)(x—4)。

9m2—4n2

=(3m)2—(2n)2

=(3m+2n)(3m—2n)。

四、精講精練

例1、把下列各式分解因式:

(1)25—16x2;(2)9a2—b2。

例2、把下列各式分解因式:

(1)9(m+n)2—(m—n)2;(2)2x3—8x。

補(bǔ)充例題:判斷下列分解因式是否正確。

(1)(a+b)2—c2=a2+2ab+b2—c2。

(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

五、課堂練習(xí)

教科書練習(xí)。

六、作業(yè)

1、教科書習(xí)題。

2、分解因式:x4—16x3—4x4x2—(y—z)2。

3、若x2—y2=30,x—y=—5求x+y。

八年級數(shù)學(xué)上教案篇7

教學(xué)目標(biāo):

1、知道負(fù)整數(shù)指數(shù)冪=(a≠0,n是正整數(shù))、

2、掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì)、

3、會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù)、

教學(xué)重點(diǎn):

掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì)。

難點(diǎn):

會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù)。

情感態(tài)度與價(jià)值觀:

通過學(xué)習(xí)課堂知識(shí)使學(xué)生懂得任何事物之間是相互聯(lián)系的,理論來源于實(shí)踐,服務(wù)于實(shí)踐。能利用事物之間的類比性解決問題、

教學(xué)過程:

一、課堂引入

1、回憶正整數(shù)指數(shù)冪的運(yùn)算性質(zhì):

(1)同底數(shù)的冪的乘法:am?an = am+n(m,n是正整數(shù));

(2)冪的乘方:(am)n = amn (m,n是正整數(shù));

(3)積的乘方:(ab)n = anbn (n是正整數(shù));

(4)同底數(shù)的冪的除法:am÷an = am?n(a≠0,m,n是正整數(shù),m>n);

(5)商的乘方:()n = (n是正整數(shù));

2、回憶0指數(shù)冪的規(guī)定,即當(dāng)a≠0時(shí),a0 = 1、

3、你還記得1納米=10?9米,即1納米=米嗎?

4、計(jì)算當(dāng)a≠0時(shí),a3÷a5 ===,另一方面,如果把正整數(shù)指數(shù)冪的運(yùn)算性質(zhì)am÷an = am?n (a≠0,m,n是正整數(shù),m>n)中的m>n這個(gè)條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。

二、總結(jié):一般地,數(shù)學(xué)中規(guī)定:當(dāng)n是正整數(shù)時(shí),=(a≠0)(注意:適用于m、n可以是全體整數(shù))教師啟發(fā)學(xué)生由特殊情形入手,來看這條性質(zhì)是否成立、事實(shí)上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運(yùn)算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an = am+n(m,n是整數(shù))這條性質(zhì)也是成立的、

三、科學(xué)記數(shù)法:

我們已經(jīng)知道,一些較大的數(shù)適合用科學(xué)記數(shù)法表示,有了負(fù)整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學(xué)記數(shù)法來表示,例如:0。000012 = 1。2×10?即小于1的正數(shù)可以用科學(xué)記數(shù)法表示為a×10?n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù)。啟發(fā)學(xué)生由特殊情形入手,比如0。012 = 1。2×10?2,0。0012 = 1。2×10?3,0。00012 = 1。2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0。0000000012 = 1。2×10?9,即對于一個(gè)小于1的正數(shù),如果小數(shù)點(diǎn)后到第一個(gè)非0數(shù)字前有8個(gè)0,用科學(xué)記數(shù)法表示這個(gè)數(shù)時(shí),10的指數(shù)是?9,如果有m個(gè)0,則10的指數(shù)應(yīng)該是?m?1。